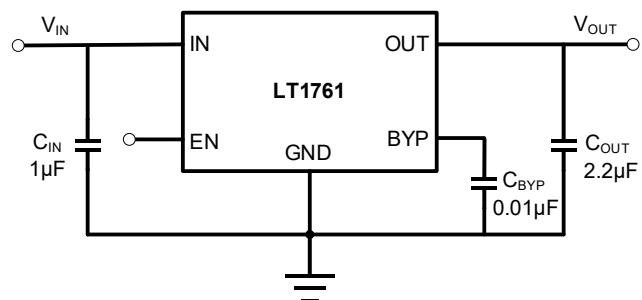
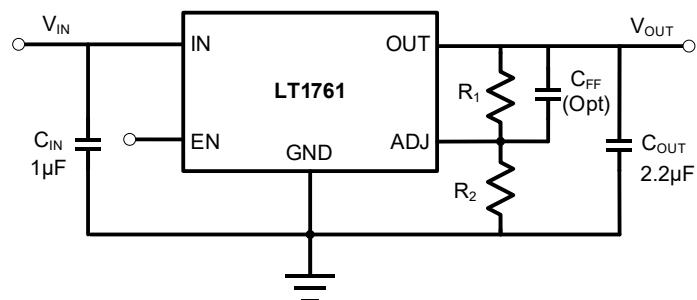


300mA 20V High Voltage Low Noise Low Dropout LDO

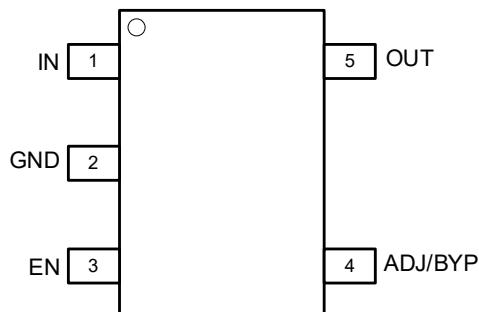

Features

- Input Voltage Range: 2.5V to 20V
- Output Voltage Range:
 - Adjustable Operation: 1.2V to 18V
 - Fixed Operation: 1.8V, 3.3V, and 5.0V
- Maximum Output Current: 300mA
- Low Dropout Voltage: 152mV at 300mA
- Low noise: 45 μ V_{RMS}
- Output Voltage Accuracy: 2% over Line, Load and Temperature
- Low Quiescent Current: $I_{GND} = 69\mu$ A
- Fast Load and Line Transient Responses
- Thermal Shutdown and Over-Current Protection
- Stable with 1 μ F or larger ceramic capacitors
- Operating Junction Temperature: -40°C to +125°C
- SOT23-5 Package


Applications

- Regulation to Noise Sensitive Applications: ADC and DAC Circuits, Power for VCO Control
- Communications and Infrastructure
- Medical Devices
- Industrial and Instrumentation

Typical Application Circuits



Fixed Output Voltage

Adjustable Output Voltage

Pin Configuration and Functions

SOT23-5 (Top View)

Pin Descriptions

PIN Number	PIN Name	I/O	Function
1	IN	I	Input supply voltage pin. It is recommended to use a 1 μ F or larger ceramic capacitor from IN pin to ground to get a good power supply decoupling.
2	GND	-	Ground.
3	EN	I	Enable Pin. Drive EN high to turn on the regulator. Drive EN low to turn off the regulator.
4	ADJ/BYP	I	For adjustable voltage version this is feedback voltage input pin. Connect this pin to the midpoint of an external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin. For fixed voltage version this is reference bypass pin. Connect an external capacitor to this pin can reduce the output to low noise level.
5	OUT	O	Regulator output voltage pin. A 1 μ F or larger ceramic capacitor from OUT to ground is required to ensure regulator stability. The capacitor should be placed as close to the output as possible. Minimize the impedance from the OUT pin to the load.

Package/Ordering Information

DEVICE	PACKAGE TYPE	OUTPUT VOLTAGE	PACKING OPTION
LT1761ES5-1.8#TRPBF	SOT23-5	1.8V	Tape and Reel, 3000
LT1761ES5-3.3#TRPBF	SOT23-5	3.3V	Tape and Reel, 3000
LT1761ES5-5#TRPBF	SOT23-5	5.0V	Tape and Reel, 3000
LT1761ES5-SD#TRPBF	SOT23-5	ADJ	Tape and Reel, 3000

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
IN, OUT and EN Pins	IN, OUT and EN	-0.3 to 22	V
ADJ Pin	ADJ/BYP	-0.3 to +6	V
Storage temperature range	T _{STG}	-65 to +150	°C
Output current	I _{OUT}	300	mA

Notes:

1. Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

ESD Ratings

		Value	Unit
V _{ESD}	Electrostatic Discharge	HBM (Human Body Model)	3000
		CDM (Charge Device Model)	1000

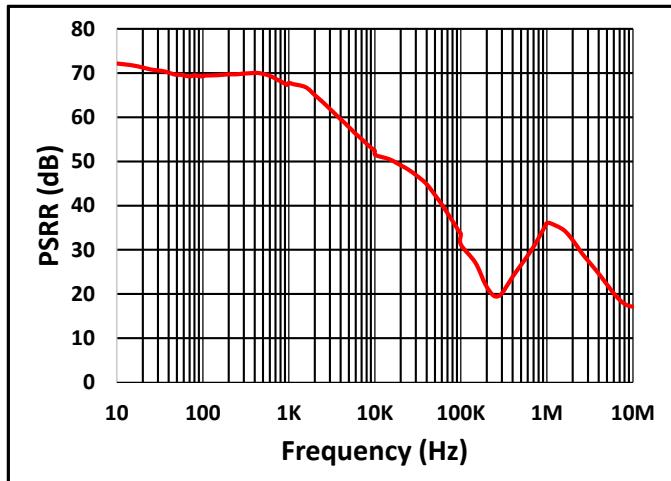
Recommended Operation Conditions

Over operating temperature range unless otherwise noted

Parameter	Symbol	Min	Max	Unit
Input Supply Voltage	V _{IN}	2.5	20	V
Enable Input Voltage	EN	0	20	V
Output Voltage	V _{OUT}	1.2	18	V
Adjustable/Bypass Pin Voltage	ADJ/BYP	0	5	V
Output Capacitance	C _{OUT}	1	47	μF
Output Current	I _{OUT}	0	300	mA
Operating Junction Temperature	T _J	-40	125	°C

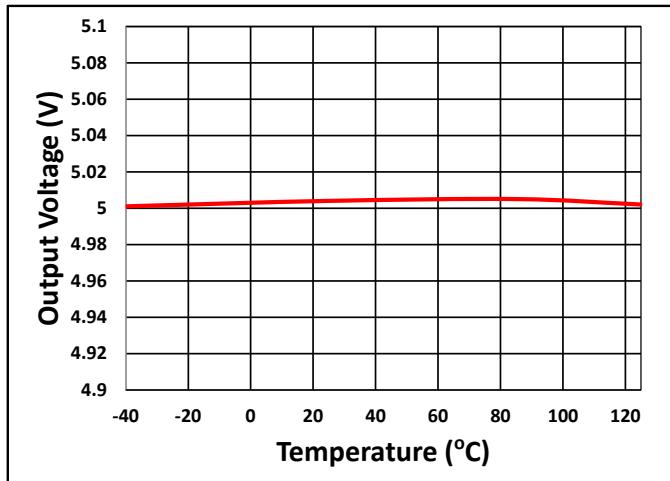
Thermal Information

Package	R _{θJA}	Unit
SOT23-5	195	°C/W


Electrical Characteristics

$V_{IN} = 2.5V$ or $V_{IN} = V_{OUT} + 1V$ (whichever is greater), $I_{OUT} = 1mA$, $C_{OUT} = 2.2\mu F$, typical values are at $T_A = 25^\circ C$ unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Input Voltage	V_{IN}		2.5	-	20	V
Reference Voltage	V_{REF}			1.2		V
Output Voltage Accuracy		$0.1mA \leq I_{OUT} \leq 300mA$	-2.0	0	2.0	%
GND Pin Current	I_{GND}	$V_{IN} = 2.5V$, No Load		69		μA
		$V_{IN} = 2.5V$, $I_{OUT} = 300mA$		128		μA
Shutdown Current	I_{SHDN}	$V_{IN} = 2.5V$, $V_{EN} = 0V$		2.3		μA
Dropout Voltage	V_{DO}	$V_{OUT} = 3.3V$, $I_{OUT} = 300mA$		152		mV
Output Current Limit	I_{LIM}	$V_{OUT} = 90\%V_{OUT(NOM)}$		600		mA
Line Regulation	$\Delta V_{OUT(Line)}$	$V_{IN} = V_{OUT} + 1V$ to 20V		0.05		mV/V
Load Regulation	$\Delta V_{OUT} / (V_{OUT}\Delta I_{OUT})$	$V_{IN} = 6V$, $I_{OUT} = 1mA$ to 300mA		0.8		%/A
EN pin low-level input voltage (device disabled)	$V_{IL(EN)}$				0.5	V
EN pin high-level input voltage (device enabled)	$V_{IH(EN)}$		1.6			V
EN PIN Leakage Current	I_{EN}	$V_{EN} = 20V$		0.8		μA
Power Supply Ripple Rejection	PSRR	$f = 1kHz$, $V_{OUT} = 3.3V$, $I_{OUT} = 300mA$		76		dB
Output Noise Voltage	V_N	$BW = 100Hz$ to $100kHz$, $C_{BYP} = 10nF$, $C_{OUT} = 2.2\mu F$, $V_{OUT} = 1.8V$, $I_{OUT} = 300mA$		45		μV_{RMS}
Thermal Shutdown Temperature	TSD			160		$^\circ C$
Thermal Shutdown Hysteresis	T_{HYS}			20		$^\circ C$


Typical Characteristics

$C_{IN} = 1\mu F$, $C_{OUT} = 2.2\mu F$, $I_{OUT} = 300mA$, $T_A = 25^\circ C$ unless otherwise noted

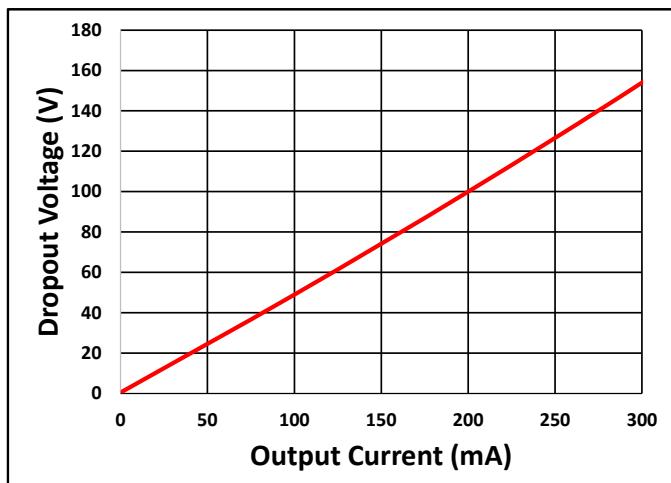

$V_{IN} = 5V$, $V_{OUT} = 3.3V$, $I_{OUT} = 300mA$, $C_{OUT} = 2.2\mu F$

Fig. 1 PSRR

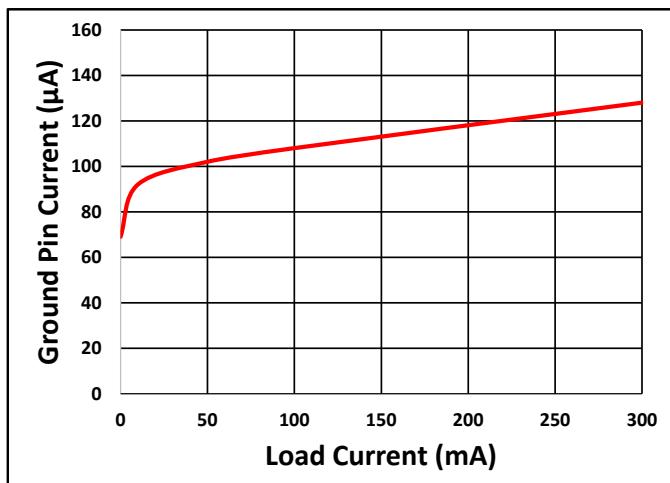
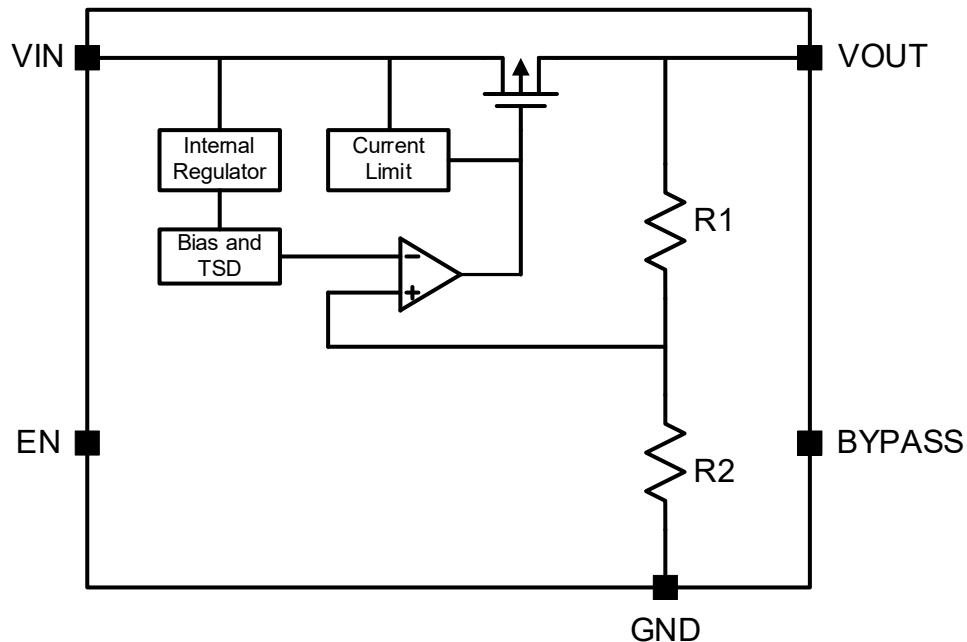

$V_{IN} = 6V$, $V_{OUT} = 5V$, $I_{OUT} = 0.1mA$

Fig. 2 Output Voltage vs Temperature

$V_{IN} = 6V$


Fig. 3 Dropout Voltage

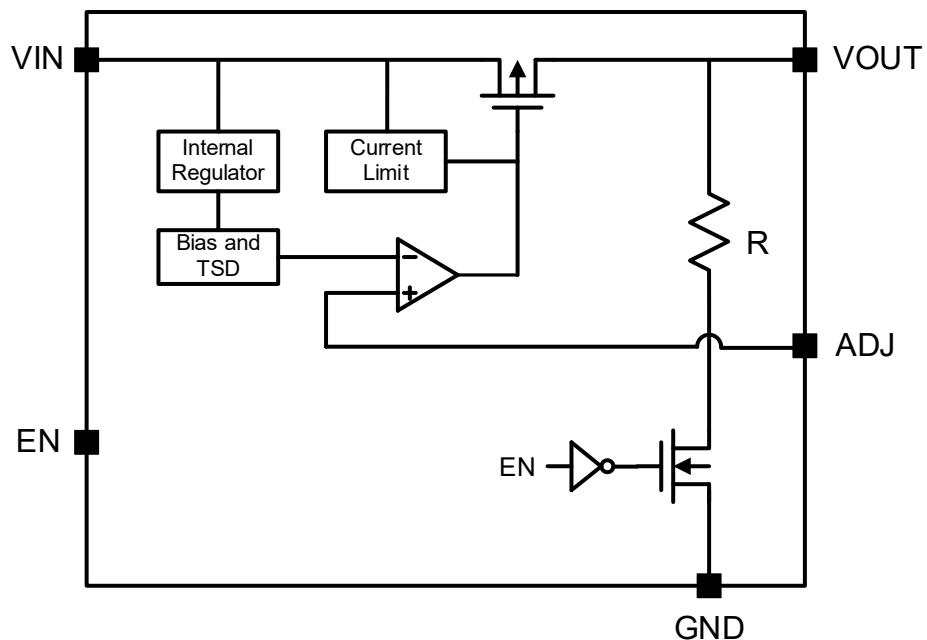

$V_{IN} = 2.5V$

Fig. 4 Ground Current vs Load Current

Functional Block Diagram

Block Diagram of Fixed Output Voltage

Block Diagram of Adjustable Output Voltage

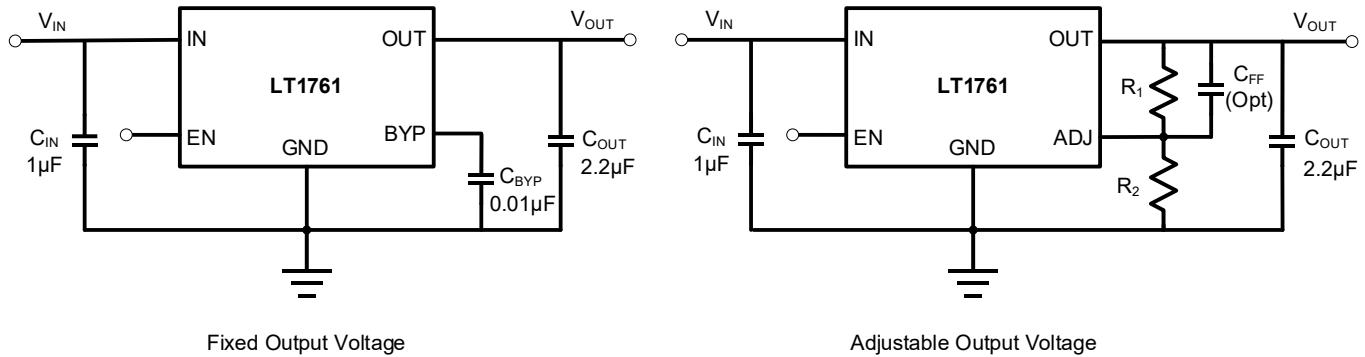
Feature Description

Enable

The enable pin for LT1761 is active high. The device is enabled when the enable pin voltage is greater than $V_{IH(EN)}$ and disabled with the enable pin voltage less than $V_{IL(EN)}$. If independent control of chip enable is not needed, then connect the enable pin to the input. The LT1761 has an internal pulldown MOSFET that connects a discharge resistor from V_{OUT} to ground when the device is disabled to actively discharge the output voltage.

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited.


Undervoltage Lockout (UVLO)

LT1761 uses an undervoltage lockout circuit to keep the output shut off until the internal circuitry is operating properly.

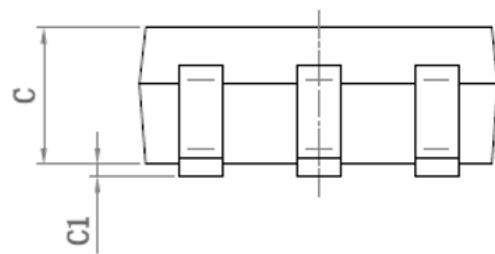
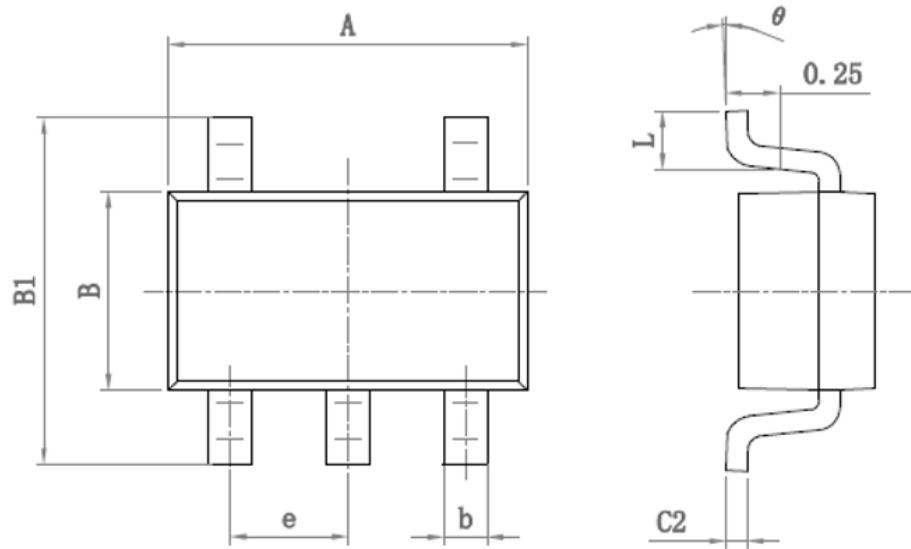
Thermal Protection

LT1761 contains a thermal shutdown protection circuit to turn off the output current when excessive heat is dissipated in the LDO.

Application Information

Typical Application for Fixed and Adjustable Output Voltage**Adjustable Output Voltage**

The output voltage of the LT1761 can be adjusted from 1.2V to 18V according to the following equation.



$$V_{OUT} = 1.2V \times \left(1 + \frac{R1}{R2}\right)$$

Input Capacitor and Output Capacitor

The LT1761 is designed and characterized for operation with ceramic capacitors of 1µF or greater at the input and 1µF or greater at the output. Locate the input and output capacitors as near as practical to the input and output pins to minimize the trace inductance from the capacitor to the device.

Feed Forward Capacitor

A Feed-Forward Capacitor (C_{FF}) in parallel with the $R1$ resistor as shown in the Figure above can be used to improve the output noise and PSRR performance. This C_{FF} is user optional for performance improvements not for LDO stability.

PACKAGE OUTLINE DIMENSIONS
SOT23-5

Symbol	Dimensions (mm)		Symbol	Dimensions (mm)	
	Min	Max		Min	Max
A	2.82	3.02	C	1.05	1.15
e	0.95 (BSC)		C1	0.03	0.15
b	0.28	0.45	C2	0.12	0.23
B	1.50	1.70	L	0.35	0.55
B1	2.60	3.00	θ	0°	8°