

500mA 20V Low-Noise LDO Voltage Regulator

Features

Wide Input Voltage Range: 2.5V to 20V

• Output Voltage Range:

• Adjustable Operation: 1.2V to 18V

• Fixed Operation: 1.8V, 3.3V, 5.0V and 12V

Maximum Output Current: 500mA

Low Dropout Voltage: 270mV at 500mA

Output Voltage Accuracy: 2%

Low Noise When Using External Bypass Cap

Fast Load and Line Transient Responses

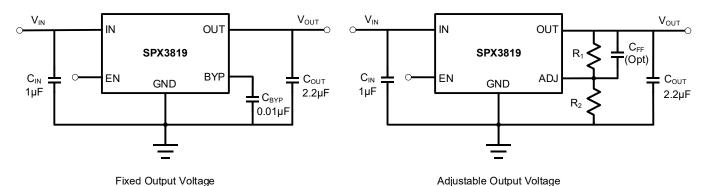
• Thermal Shutdown and Over-Current Protection

Stable with 1µF or Larger Ceramic Capacitor

Operating Junction Temperature: -40°C to +125°C

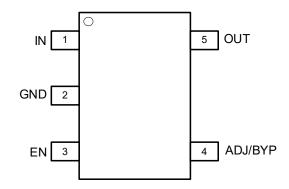
Available package: SOT23-5

Applications


- Cellular Phones
- Laptop computers
- Portable Equipment
- Battery-Powered Systems
- High-Efficiency Linear Power Supplies

Description

The device is a high voltage, high PSRR and low dropout voltage linear regulator capable of sourcing 500mA current. The output voltage can be adjusted from 1.2V to 18V by using external resistor divider for the adjustable version. The fixed version output voltage spans from 1.8V to 12V.


The device also features short-circuit current limit and thermal shutdown protection, as well as automatic discharge function to quickly discharge V_{OUT} in the disabled state.

Typical Application Circuits

Pin Configuration and Functions

5-Pin SOT-23 (Top View)

Pin Descriptions

PIN Number	PIN Name	I/O	Function
1	IN	I	Input supply voltage pin. It is recommended to use a 1µF or larger ceramic capacitor from IN pin to ground to get a good power supply decoupling.
2	GND	-	Ground.
3	EN	ı	Enable Pin. Drive EN high to turn on the regulator. Drive EN low to turn off the regulator.
4	ADJ/BYP	I	For adjustable voltage version this is feedback voltage input pin. Connect this pin to the midpoint of an external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin. For fixed voltage version this is reference bypass pin. Connect an external 10nF capacitor from this pin to ground can reduce the output to a very low noise level. This pin can be left open if low noise at the output is not required.
5	OUT	0	Regulator output voltage pin. A 2.2µF or larger ceramic capacitor from OUT to ground is required to ensure regulator stability. The capacitor should be placed as close to the output as possible. Minimize the impedance from the OUT pin to the load.

Ordering Information

DEVICE	DEVICE PACKAGE TYPE		OUTPUT VOLTAGE	PACKING OPTION	
SPX3819M5-L-1-8/TR	SOT23-5	G318	1.8V	Tape and Reel, 3000	
SPX3819M5-L-2-5/TR	SOT23-5	L333	2.5V	Tape and Reel, 3000	

DYW

SPX3819

SPX3819M5-L-3-3/TR	SOT23-5	L352	3.3V	Tape and Reel, 3000
SPX3819M5-L-5-0/TR	SOT23-5	M321	5.0V	Tape and Reel, 3000
SPX3819M5-L/TR	SOT23-5	G132	ADJ	Tape and Reel, 3000

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
IN, OUT and EN Pins	IN, OUT and EN	-0.3 to 22	V
ADJ Pin	ADJ/BYP	-0.3 to +6	V
Storage temperature range	T _{STG}	-65 to +150	°C
Output current	I _{оит}	500	mA

Notes:

1. Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

ESD Ratings

			Value	Unit
	HBM (Human Body Model)	3000	M	
V _{ESD}	Electrostatic Discharge	CDM (Charge Device Model)	1000	V

Recommended Operation Conditions

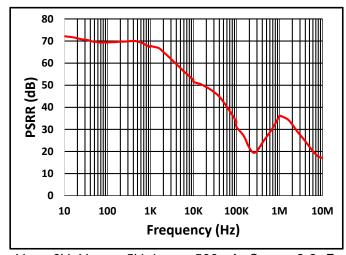
Over operating temperature range unless otherwise noted

Parameter	Symbol	Min	Max	Unit
Input Supply Voltage	V _{IN}	2.5	20	V
Enable Input Voltage	EN	0	20	V
Output Voltage	V _{OUT}	1.2	18	V
Adjustable/Bypass Pin Voltage	ADJ/BYP	0	5	V
Output Capacitance	Соит	1	47	μF
Output Current	I _{OUT}	0	500	mA
Operating Junction Temperature	TJ	-40	125	°C

Thermal Information

Package	R _{0JA}	Unit	
SOT23-5	195	°C/W	

Electrical Characteristics


 V_{IN} = 2.5V or V_{IN} = V_{OUT} + 1V (whichever is greater), I_{OUT} = 1mA, C_{OUT} = 2.2 μ F, typical values are at T_A = 25°C unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage	V _{IN}		2.5	-	20	V
Reference Voltage	V_{REF}			1.2		V
Output Voltage Accuracy		0.1mA ≤ I _{OUT} ≤ 500mA	-2.0	0	2.0	%
GND Pin Current	I _{GND}	V _{IN} = 2.5V, No Load		69		μA
OND I III Odiferit	IGND	$V_{IN} = 2.5V, I_{OUT} = 500mA$		145		μΑ
Shutdown Current	I _{SHDN}	$V_{IN} = 2.5V, V_{EN} = 0V$		2.3		μΑ
Dropout Voltage	V_{DO}	V _{OUT} = 3.3V, I _{OUT} = 500mA		270		mV
Output Current Limit	I _{LIM}	V _{OUT} = 0V	500			mA
Line Regulation	$\Delta V_{OUT(LINE)}$	V _{IN} = V _{OUT} +1V to 20V		0.05		mV/V
Load Regulation	ΔV_{OUT} /($V_{OUT}\Delta I_{OUT}$)	V _{IN} = 6V, I _{OUT} = 1mA to 500mA		0.0008		%/mA
EN pin low-level input voltage (device disabled)	V _{IL(EN)}				0.5	V
EN pin high-level input voltage (device enabled)	V _{IH(EN)}		1.6			V
EN PIN Leakage Current	I _{EN}	V _{EN} = 20V		0.8		μΑ
Power Supply Ripple Rejection	PSRR	f = 1kHz, V _{OUT} = 5V, I _{OUT} = 500mA		64		dB
Output Noise Voltage	V _N	BW = 100Hz to 100kHz, C_{BYP} = 10nF, C_{OUT} = 2.2 μ F, V_{OUT} = 1.8V, I_{OUT} = 500mA		45		μV _{RMS}
Thermal Shutdown Temperature	TSD			160		°C
Thermal Shutdown Hysteresis	T _{HYS}			20		°C

Typical Characteristics

 C_{IN} = 1 μ F, C_{OUT} = 2.2 μ F, I_{OUT} = 500mA, T_A = 25°C unless otherwise noted

 V_{IN} = 6V, V_{OUT} = 5V, I_{OUT} = 500mA, C_{OUT} = 2.2 μ F

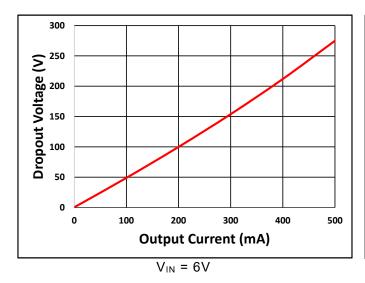
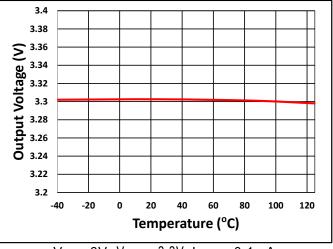
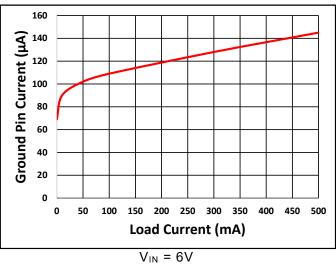
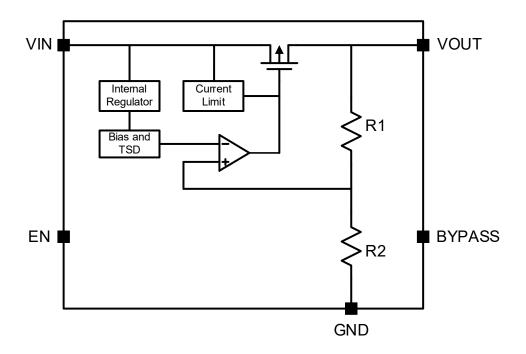
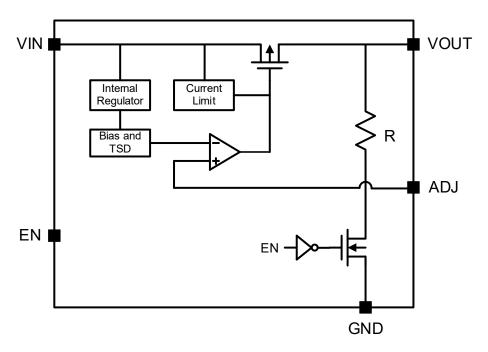



Fig. 3 Dropout Voltage

 $V_{IN} = 6V$, $V_{OUT} = 3.3V$, $I_{OUT} = 0.1mA$

Fig. 2 Output Voltage vs Temperature


Fig. 4 Ground Current vs Load Current

Functional Block Diagram

Block Diagram of Fixed Output Voltage

Block Diagram of Adjustable Output Voltage

Feature Description

Enable

The enable pin for the LDO is active high. The device is enabled when the enable pin voltage is greater than $V_{IH(EN)}$ and disabled with the enable pin voltage less than $V_{IL(EN)}$. If independent control of chip enable is not needed, then connect the enable pin to the input. The LDO has an internal pulldown MOSFET that connects a discharge resistor from VOUT to ground when the device is disabled to actively discharge the output voltage.

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited.

Undervoltage Lockout (UVLO)

The LDO uses an undervoltage lockout circuit to keep the output shut off until the internal circuitry is operating properly.

Thermal Protection

The LDO contains a thermal shutdown protection circuit to turn off the output current when excessive heat is dissipated in the LDO.

Application Information

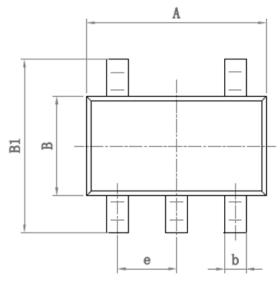
Typical Application for Fixed and Adjustable Output Voltage

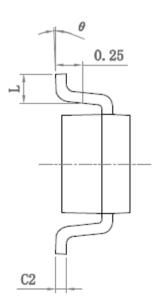
Input Capacitor and Output Capacitor

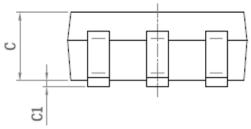
The LDO is designed and characterized for operation with ceramic capacitors of μF or greater at the input and 2.2 μF or greater at the output. Locate the input and output capacitors as near as practical to the input and output pins to minimize the trace inductance from the capacitor to the device.

Adjustable Output Voltage

The output voltage of the LDO can be adjusted from 1.2V to 18V according to the following equation.


$$V_{OUT} = 1.2V \times \left(1 + \frac{R1}{R2}\right)$$


Feed Forward Capacitor


A Feed-Forward Capacitor (C_{FF}) in parallel with the R1 resistor as shown in the Figure above can be used to improve the output noise and PSRR performance. This C_{FF} is user optional for performance improvements not for LDO stability.

PACKAGE OUTLINE DIMENSIONS S0T23-5

Symbol	Dimensions (mm)		Symbol	Dimensions (mm)		
Symbol	Min	Max	Symbol	Min	Max	
А	2.82	3.02	С	1.05	1.15	
е	0.95 (BSC)		C1	0.03	0.15	
b	0.28	0.45	C2	0.12	0.23	
В	1.50	1.70	L	0.35	0.55	
B1	2.60	3.00	θ	0°	8°	