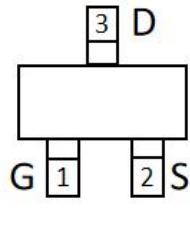
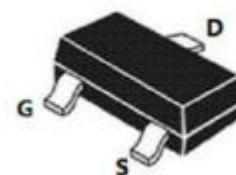

MILLERSEMI

MN30T26MR


30V N-Channel MOSFET

1. General Description


The MN30T26MR uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 0.7V. This device is suitable for use as a load switch or in PWM applications.

Schematic Diagram

Pin Assignment

SOT-23 top view

2. Specification Features

- $V_{DS} = 30V, I_D = 6A$
- $R_{DS(ON)} < 30 \text{ m}\Omega$ @ $V_{GS} = 4.5V$ (Type: $25 \text{ m}\Omega$)
- $R_{DS(ON)} < 38 \text{ m}\Omega$ @ $V_{GS} = 2.5V$
- High Power and current handling capability
- Lead free product is acquired
- Surface Mount Package

3. Application

- PWM applications
- Load switch
- Power management

4. Absolute Maximum Ratings ($T_J = 25^\circ\text{C}$)

Characteristics	Symbol	Rating	Unit
DrainSource Voltage	V_{DSS}	30	V
GateSource Voltage	V_{GSS}	± 12	V
Continuous Drain Current(1)	I_D	6	A
		5.5	
		3.2	
Pulsed Drain Current(2)	I_{DM}	30	
Power Dissipation	P_D	1	W
		0.7	
Single Pulse Avalanche Energy(3)	E_{AS}		mJ
Junction and Storage Temperature Range	T_J, T_{STG}	55~175	°C

MILLERSEMI

MN30T26MR

30V N-Channel MOSFET

5. Thermal resistance ratings

Parameter	Symbol	Value	Units
Junction-to-Ambient Thermal Resistance ^a	R_{\thetaJA}	125	°C/W
Junction-to-Ambient Thermal Resistance ^b	R_{\thetaJC}		°C/W

6. Electrical Characteristics (TJ =25°C)

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
Static Characteristics						
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A, V_{GS}=0V$	30	33		V
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}, I_D=250\mu A$	0.5	0.7	1.1	V
$ I_{DSS} $	Drain CutOff Current	$V_{DS}=30V, V_{GS}=0V$			1	μA
I_{GSS}	Gate Leakage Current	$V_{GS}=\pm 12V, V_{DS}=0V$			± 0.1	μA
$R_{DS(on)}$	Drain-Source On-Resistance	$V_{GS}=4.5V, I_D=5A$		25	30	$m\Omega$
		$V_{GS}=2.5V, I_D=5A$		35	38	
g_{FS}	Forward Transconductance	$V_{DS}=10V, I_D=6A$		10		S
Dynamic Characteristics						
Q_g	Total Gate Charge	$V_{DS}=10V, I_D=6A, V_{GS}=10V$		4		nc
Q_{gs}	Gate Source Charge			0.8		nc
Q_{gd}	Gate Drain Charge			1.3		nc
C_{iss}	Input Capacitance	$V_{DS}=10V, V_{GS}=0V, f=1.0MHz$		480		pF
C_{rss}	Reverse Transfer Capacitance			55		pF
C_{oss}	Output Capacitance			90		pF
$t_{D(on)}$	Turn-On Delay Time	$V_{GS}=10V, V_{DS}=10V, R_L=2.8\Omega, R_G=6\Omega$		10		ns
t_r	Rise Time			51		ns
$t_{D(off)}$	Turn-Off Delay Time			16		ns
t_f	Fall Time			10		ns
R_g	Gate Resistance	$f=1MHz$				Ω
Drain-Source Body Diode Characteristics						
V_{SD}	SourceDrain Diode Forward Voltage	$I_S=6A, V_{GS}=0V$		0.9	1.2	V
t_{rr}	Body Diode Reverse Recovery Time	$I_F=6A, dI/dt=100A/\mu S$		-		ns
Q_{rr}	Body Diode Reverse Recovery Charge			-		nc

Notes 1.Repetitive Rating: Pulse width limited by maximum junction temperature.

MILLERSEMI

MN30T26MR

30V N-Channel MOSFET

7. Typical Electrical and Thermal Characteristics (Curves)

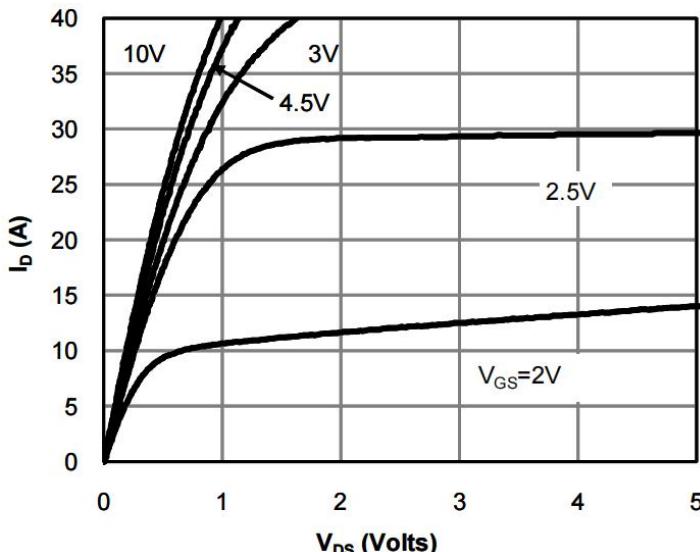


Fig 1: On-Region Characteristics

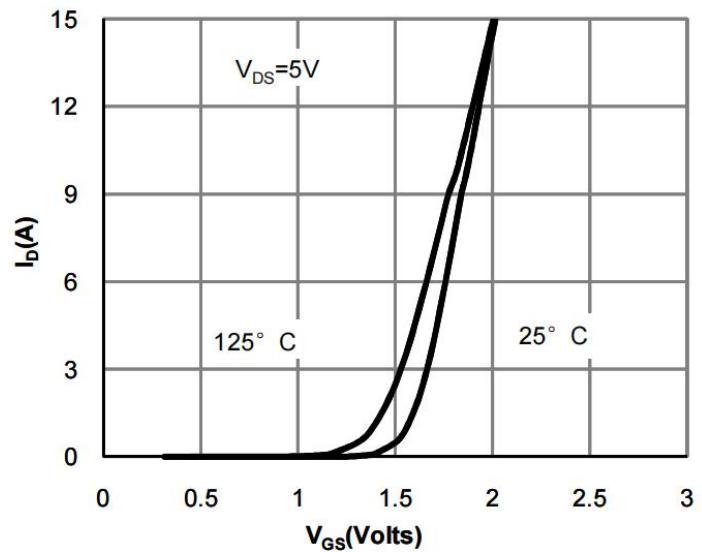


Figure 2: Transfer Characteristics

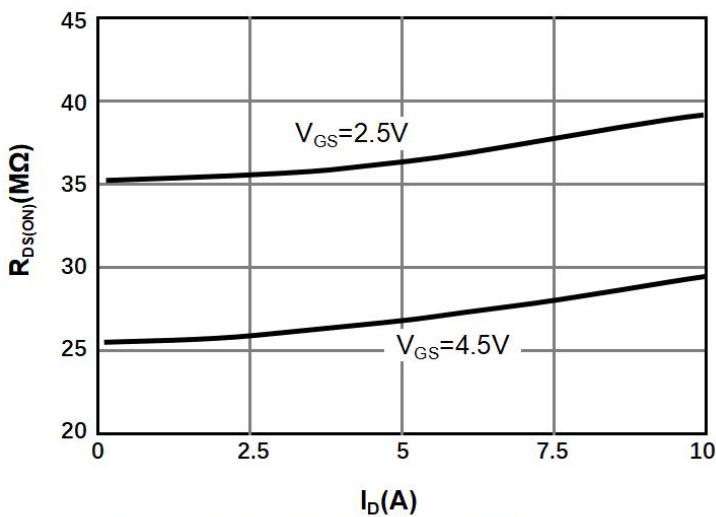


Figure 3: On-Resistance vs. Drain Current and Gate

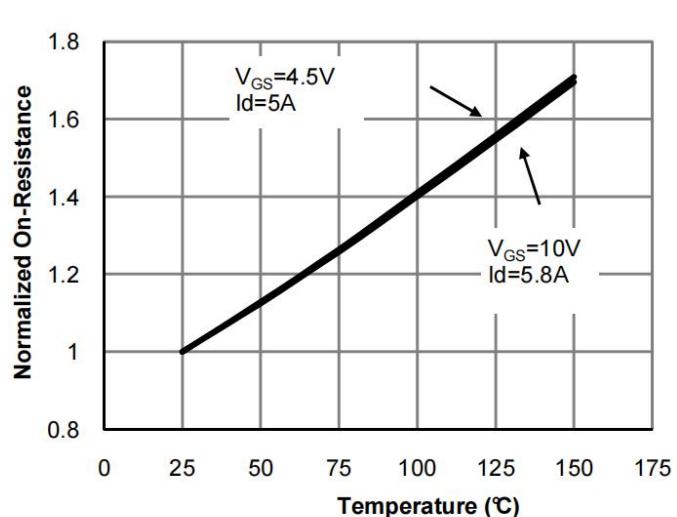


Figure 4: On-Resistance vs. Junction Temperature

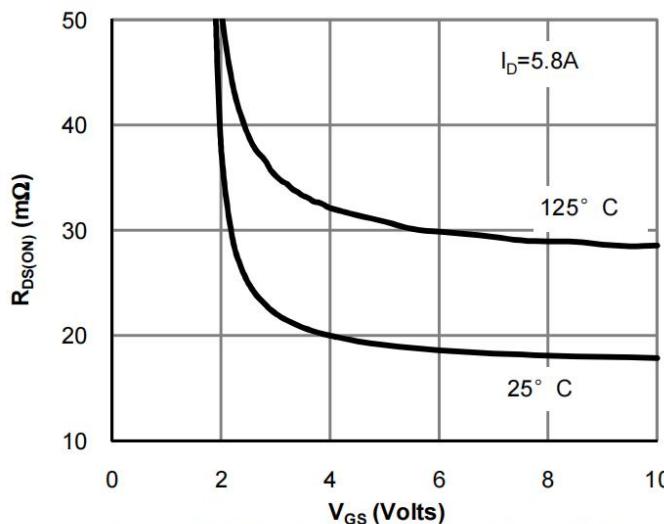


Figure 5: On-Resistance vs. Gate-Source Voltage

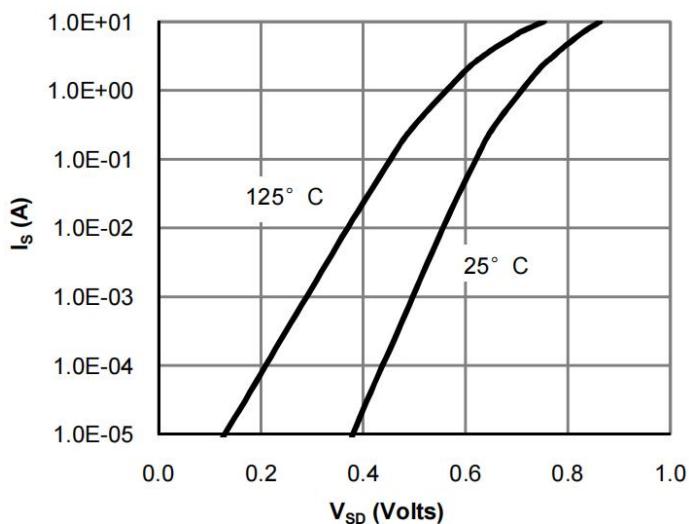
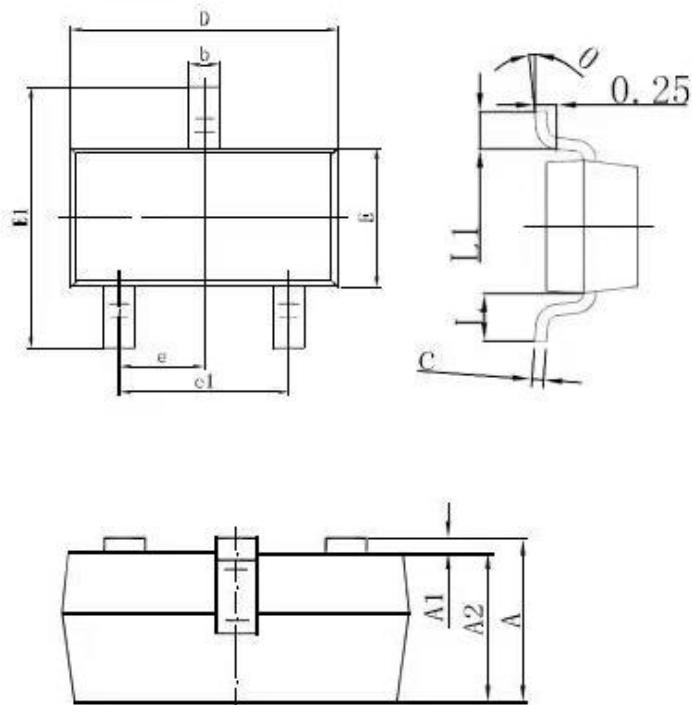


Figure 6: Body-Diode Characteristics


MILLERSEMI

MN30T26MR

30V N-Channel MOSFET

8. Package Outline Dimensions

Device Marking	Device	Package	Reel size	Tape width	Quantity
N3026	MN30T26MR	SOT-23	7inch	8mm	3000

SOT-23 POD UNIT:mm		
Symbol	Min	Max
A	0.90	1.15
A1	0.00	0.10
A2	0.90	1.05
b	0.30	0.50
c	0.08	0.15
D	2.80	3.00
E	1.20	1.40
E1	2.25	2.55
e	0.950TYP	
e1	1.80	2.00
L	0.550REF	
L1	0.30	0.50
θ	0°	8°

MILLERSEMI

MN30T26MR

30V N-Channel MOSFET

9. RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- Miller semiconductor Co., Ltd. exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Miller semiconductor products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that Miller semiconductor products are used within specified operating ranges as set forth in the most recent Miller semiconductor products specifications.
- The Miller semiconductor products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Miller semiconductor products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Miller semiconductor products listed in this document shall be made at the customer's own risk.