

Parameters Subject to Change Without Notice

DESCRIPTION

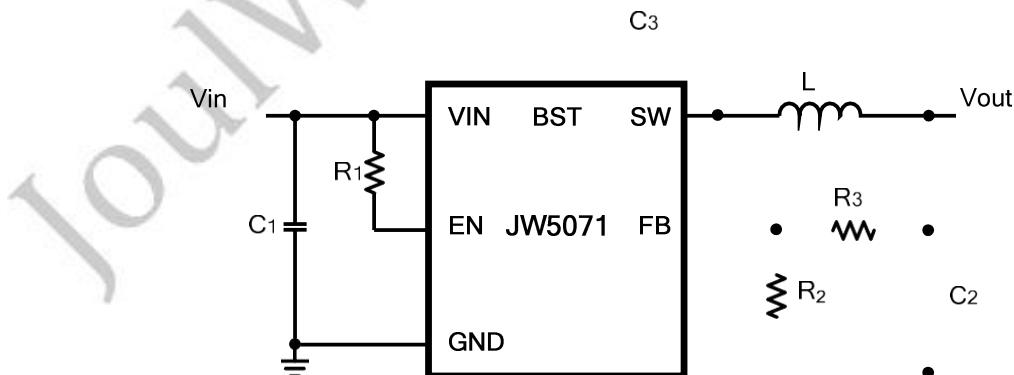
The JW®5071 is a current mode monolithic buck voltage converter. Operating with an input range of 4.5V-28V, the JW5071 delivers 2A of continuous output current with two integrated N-Channel MOSFETs. At light loads, regulators operate in low frequency to maintain high efficiency and low output ripple.

The JW5071 guarantees robustness with short circuit protection, thermal protection, current run-away protection, and input under voltage lockout. The JW5071 is available in a 6-pin SOT23-6 package, which provides a compact solution with minimal external components.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered

Trademarks of JouleWatt technology Inc.

FEATURES


- 4.5V to 28V operating input range
- 2A output current
- Up to 93% efficiency
- High efficiency at light load
- 600kHz Switching frequency
- Input under voltage lockout
- Start-up current run-away protection
- Over current protection and Hiccup
- Thermal protection
- Available in SOT23-6 package

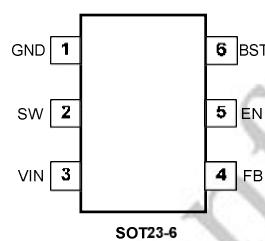
APPLICATIONS

- Distributed Power Systems
- Networking Systems
- FPGA, DSP, ASIC Power Supplies
- Green Electronics/ Appliances
- Notebook Computers

TYPICAL APPLICATION

2A Step Down Regulator

ORDER INFORMATION


DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾
JW5071SOTB#TRPBF	SOT23-6	JWDYX YWLLL

Notes:

JW # TRPBF I
 1) PB Free
 Tape and Reel(if "TR" is not shown, it means tube)
 Package Code
 Part No.

JW T Internal control code YWLLL
 2) Line1: Product code of JWXXXX Line2: Lot number
 JouleWatt LOGO Week code
 Year code

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING¹⁾

VIN, EN Pin.....	V to 30V
SW.....	0.3V(-5V for 20ns) to 30V(32V for 20ns)
BST Pin.....	SW-0.3V to SW+5.5V
All other Pins.....	V to 6V
Junction Temp. ^{2) 3)}	150°C
Lead Temperature.....	260°C

RECOMMENDED OPERATING CONDITIONS

Input Voltage VIN.....	V to 28V
Output Voltage Vout.....	V to VIN-3V

THERMAL PERFORMANCE⁴⁾

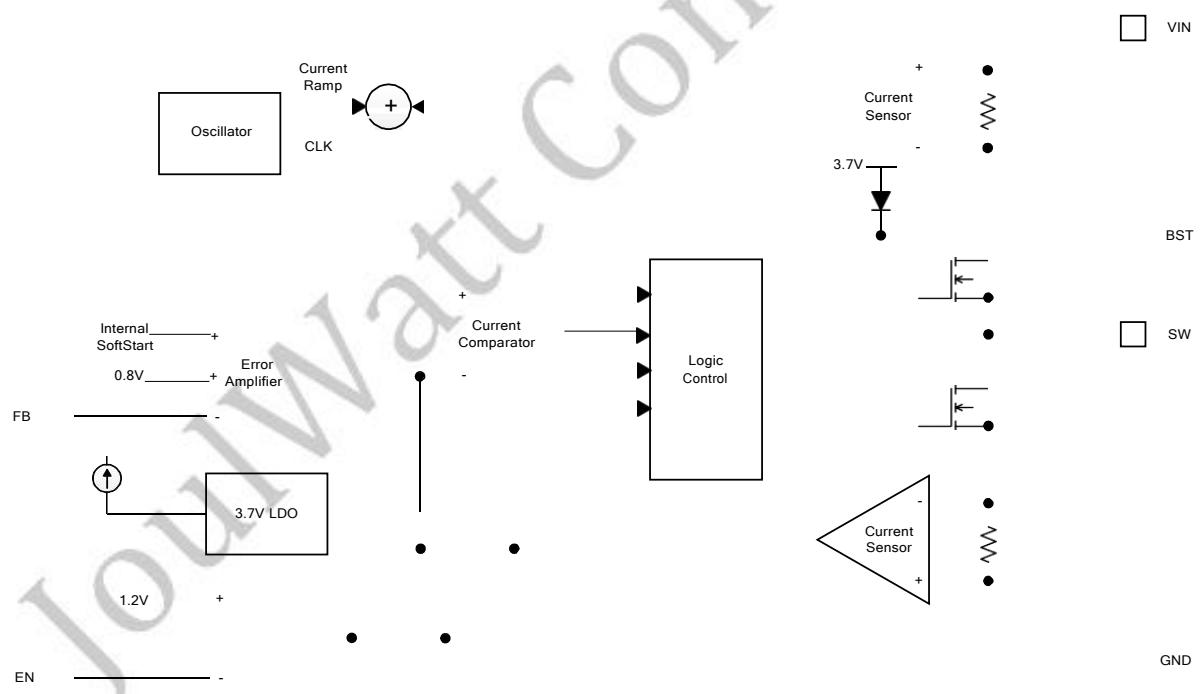
SOT23-6..... 220...130°C/W

Note:

- 1) Exceeding these ratings may damage the device.
- 2) The JW5071 guarantees robust performance from -40°C to 150°C junction temperature. The junction temperature range specification is assured by design, characterization and correlation with statistical process controls.
- 3) The JW5071 includes thermal protection that is intended to protect the device in overload conditions. Thermal protection is active when junction temperature exceeds the maximum operating junction temperature. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 4) Measured on JESD51-7, 4-layer PCB

ELECTRICAL CHARACTERISTICS

<i>V_{IN}=12V, T_A=25°C, Unless otherwise stated.</i>							
Item	Symbol	Conditions	Min.	Typ.	Max.	Unit	
V _{IN} Under Voltage Lock-out Threshold	V _{IN_MIN}	V _{IN} rising		4.2	4.45	V	
V _{IN} Under voltage Lockout Hysteresis	V _{IN_MIN_HYST}			300		mV	
Shutdown Supply Current	I _{SD}	V _{EN} =0V		2		µA	
Supply Current	I _Q	V _{EN} =5V, V _{FB} =1.2V		120	150	µA	
Feedback Voltage	V _{FB}	4.5V < V _{IN} < 28V	784	800	816	mV	
Top Switch Resistance ⁵⁾	R _{DS(ON)T}			110		mΩ	
Bottom Switch Resistance ⁵⁾	R _{DS(ON)B}			78		mΩ	
Top Switch Leakage Current	I _{LEAK_TOP}	V _{IN} =28V, V _{EN} =0V, V _{SW} =0V		0.1	1	µA	
Bottom Switch Leakage Current	I _{LEAK_BOT}	V _{IN} =28V, V _{EN} =0V, V _{SW} =28V		0.1	1	µA	
Top Switch Current Limit	I _{LIM_TOP}	Minimum Duty Cycle	2.9	3.7	4.5	A	
Switch Frequency	F _{SW}		400	600	800	kHz	
Minimum On Time ⁵⁾	T _{ON_MIN}			110		ns	
Minimum Off Time ⁵⁾	T _{OFF_MIN}	V _{FB} =0.4V		150		ns	
EN Rising Threshold	V _{EN_H}	V _{EN} rising		1.24	1.35	V	
EN Falling Threshold	V _{EN_L}	V _{EN} falling	1.0	1.1		V	
Soft-Start Time ⁵⁾	t _{ss}			1		ms	
Thermal Shutdown ⁵⁾	T _{TSD}			160		°C	
Thermal Shutdown hysteresis ⁵⁾	T _{TSD_HYST}			20		°C	


Note:

5) Guaranteed by design.

PIN DESCRIPTION

SOT23-6 Pin	Name	Description
1	GND	Ground.
2	SW	SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load.
3	VIN	Input voltage pin. VIN supplies power to the IC. Connect a 4.5V to 28V supply to VIN and bypass VIN to GND with a suitably large capacitor to eliminate noise on the input to the IC.
4	FB	Output feedback pin. FB senses the output voltage and is regulated by the control loop to 0.8V. Connect a resistive divider at FB.
5	EN	Drive EN pin high to turn on the regulator and low to turn off the regulator.
6	BST	Bootstrap pin for top switch. A 0.1uF or larger capacitor should be connected between this pin and the SW pin to supply current to the top switch and top switch driver.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW5071 is a synchronous, current-mode, step-down regulator. It regulates input voltages from 4.5V to 28V down to an output voltage as low as 0.8V, and is capable of supplying up to 2A of load current.

Current-Mode Control

The JW5071 utilizes current-mode control to regulate the FB voltage. Voltage at the FB pin is regulated at 0.8V so that by connecting an appropriate resistive divider between VOUT and GND, designed output voltage can be achieved.

PFM Mode

The JW5071 operates in PFM mode at light load. In PFM mode, switch frequency decreases when load current drops to boost power efficiency at light load by reducing switch-loss, while switch frequency increases when load current rises, minimizing output voltage ripples.

Internal Soft-Start.

Soft-Start makes output voltage rising smoothly follow an internal SS voltage until SS voltage is higher than the internal reference voltage. It can prevent overshoot of output voltage when startup.

Power Switch

N-Channel MOSFET switches are integrated on the JW5071 to down convert the input voltage to the regulated output voltage. Since the top MOSFET needs a gate voltage greater than the input voltage, a boost capacitor connected between BST and SW pins is required to drive the gate of the top switch. The boost capacitor is charged by the internal 3.7V rail when SW is

low.

Vin Under-Voltage Protection

A resistive divider can be connected between Vin and GND, with the central tap connected to EN, so that when Vin drops to the pre-set value, EN drops below 1.1V to trigger input under voltage lockout protection.

Output Current Run-Away Protection

At start-up, due to the high voltage at input and low voltage at output, current inertia of the output inductance can be easily built up, resulting in a large start-up output current. A valley current limit is designed in the JW5071 so that only when output current drops below the valley current limit can the top power switch be turned on. By such control mechanism, the output current at start-up is well controlled.

Over Current Protection and Hiccup

JW5071 has a cycle-by-cycle current limit. When the inductor current triggers current limit, JW5071 enters hiccup mode and periodically restart the chip.

JW5071 will exit hiccup mode while not triggering current limit.

Thermal Protection

When the temperature of the JW5071 rises above 160°C, it is forced into thermal shutdown.

Only when core temperature drops below 140°C can the regulator becomes active again.

PACKAGE OUTLINE

SOT23-6		UNIT: mm		
SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
A	1.05	1.15	1.25	
A1	0	0.05	0.15	
A2	0.95	1.05	1.20	
b	0.20	0.40	0.60	
c	0.05	—	0.21	
D	2.72	2.92	3.12	
E	2.60	2.80	3.00	
E1	1.40	1.60	1.80	
e	0.95 (BSC)			
L	0.30	0.45	0.60	
θ	0°	—	8°	

IMPORTANT NOTICE

- Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2019 JW5071 Incorporated.

All rights are reserved by Joulwatt Technology Inc.