

SKYWORKS®

DATA SHEET

OLI303: Miniature Wide Bandwidth Optocoupler for Hybrid Assembly

Features

- Electrical parameters assured over -55°C to $+125^{\circ}\text{C}$ ambient temperature range
- 1500 VDC electrical isolation
- High gain, 10 dB typical
- Open collector output
- 450 kHz bandwidth
- High reliability and rugged construction
- Similar to 6N135/136, 4N55 type optocouplers
- Radiation tolerant
- For RoHS and other product compliance information, see the [Skyworks Certificate of Conformance](#)

Description

The OLI303 is suitable for wide bandwidth analog applications. Each OLI303 has an LED and an integrated photodiode transistor detector mounted and coupled in a miniature custom ceramic package that provides 1500 VDC of electrical isolation between the input and output. The integrated photodiode transistor improves the bandwidth by orders of magnitude compared to standard photo-transistors. The internal shield provides excellent common-mode immunity performance.

Device mounting is achieved by a standard hybrid assembly with non-conductive epoxies. Gold or aluminum wire bonding can be used to make electrical connections for maximum placement flexibility.

Note: Certain cleaning processes may be harmful to this device. Contact Skyworks for details.

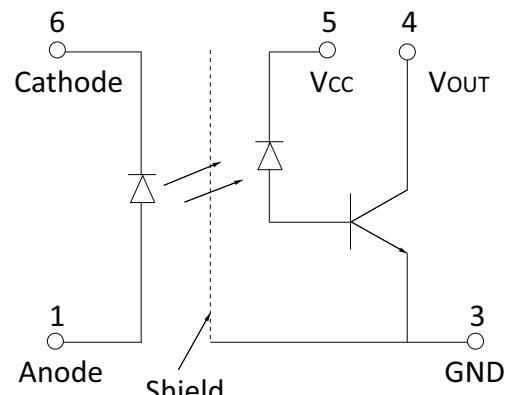


Figure 1. Functional Block Diagram

Figure 1 shows the OLI303 functional block diagram. Table 1 provides the OLI303 absolute maximum ratings. Table 2 provides the OLI303 electrical specifications.

Figures 2 through 4 illustrate the OLI303 typical performance characteristics. Figure 5 shows the OLI303 gain and bandwidth test circuit. Figure 6 provides the OLI303 package dimensions.

Electrical and Mechanical Specifications

Table 1. Absolute Maximum Ratings¹

Parameter	Symbol	Minimum	Maximum	Units
Coupled				
Input to output isolation voltage ²	V _{DC}	-1500	+1500	V
Storage temperature range	T _{TG}	-65	+150	°C
Operating temperature range	T _A	-55	+125	°C
Mounting temperature range (3 minutes maximum)			+240	°C
Input Diode				
Average input current	I _{DD}		20	mA
Peak forward current (≤ 1 ms duration)	I _F		40	mA
Reverse voltage	V _R		5	V
Power dissipation	P _D		36	mW
Output Detector				
Average output current			8	mA
Peak output current			16	mA
Supply voltage	V _{CC}	-0.5	+18.0	V
Output voltage	V _{OUT}	-0.5	+18.0	V
Power dissipation	P _D		50	mW
Derate linearly from 100 °C			1.4	mW/°C

1. Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to the device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.
2. Measured between pins 1 and 6 shorted together, and pins 2, 3, 4, and 5 shorted together. T_A = 25 °C and duration = 1 s.

ESD Handling: Industry-standard ESD handling precautions must be adhered to at all times to avoid damage to this device.

Table 2. Electrical Specifications¹
(TA = -55°C to $+125^{\circ}\text{C}$, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
Current transfer ratio (CTR) ²	CTR	$I_F = 5.0 \text{ mA}$, $V_{CE} = 1.2 \text{ V}$	20.0	50.0	80.0	%
Gain	G	$I_F = 5.0 \text{ mA}$, $V_{CE} = 1.2 \text{ V}$, $R_C = 2.1 \text{ k}\Omega$, $f = 10.0 \text{ kHz}$	4.0	10.0	16.0	dB
Collector-to-Emitter						
Saturation voltage	$V_{CE(\text{SAT})}$	$I_F = 10.0 \text{ mA}$, $I_{OL} = 1.5 \text{ V}$, $V_{CC} = 4.5 \text{ V}$		0.15	0.4	V
Breakdown voltage	BV_{CEO}	$I_F = 0 \text{ mA}$, $I_{CE} = 1 \text{ mA}$	18			V
Leakage current	I_{CEO}	$I_F = 0 \text{ mA}$, $V_O = 15.0 \text{ V}$, $V_{CC} = \text{open}$		0.05	100.0	V
Supply current	I_{CC}	$I_F = 0 \text{ mA}$, $V_{CC} = 15.0 \text{ V}$, $V_O = \text{open}$		0.05	10.0	μA
Input						
Forward voltage	V_F	$I_F = 10.0 \text{ mA}$		1.8	2.5	V
Reverse breakdown voltage	BV_R	$I_R = 10 \mu\text{A}$	3			V
Output leakage current ³	I_{I-O}	$R_H \leq 50\%$, $V_{I-O} = 1500.0 \text{ V}_{\text{DC}}$			1.0	μA
Output capacitance	C_{I-O}	$V_{I-O} = 0 \text{ V}_{\text{DC}}$, $f = 1 \text{ MHz}$		0.5	2.0	pF
Bandwidth @ 45°C phase Shift @ -3 dB	Bw	$I_F = 5.0 \text{ mA}$, $V_{CE} = 1.2 \text{ V}$, $R_C = 2.1 \text{ k}\Omega$	150.0	300.0		kHz
					450.0	

1. Performance is guaranteed only under the conditions listed in the above table.
2. Current transfer ratio is defined as the ratio of the output collector current IC to the forward LED current IF, multiplied by 100%.
3. Measured between pins 1 and 6 shorted together, and pins 2, 3, 4, and 5 shorted together. TA = 25°C and duration = 1 s.

Typical Performance Characteristics

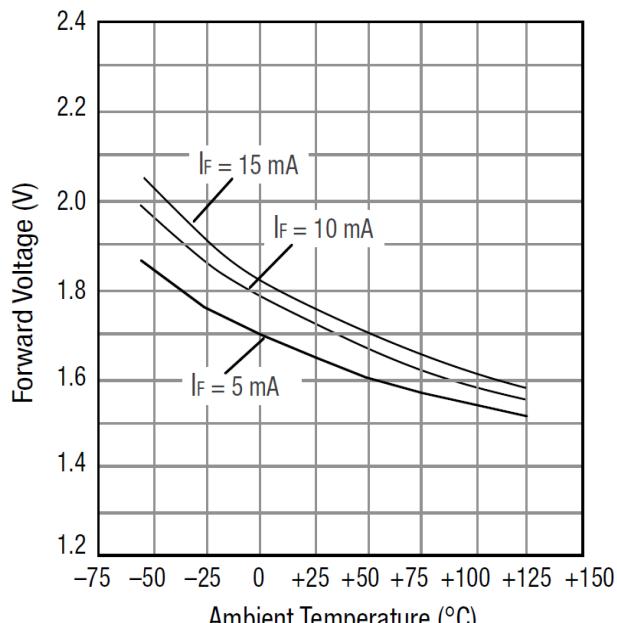


Figure 2. LED Forward Voltage vs Temperature

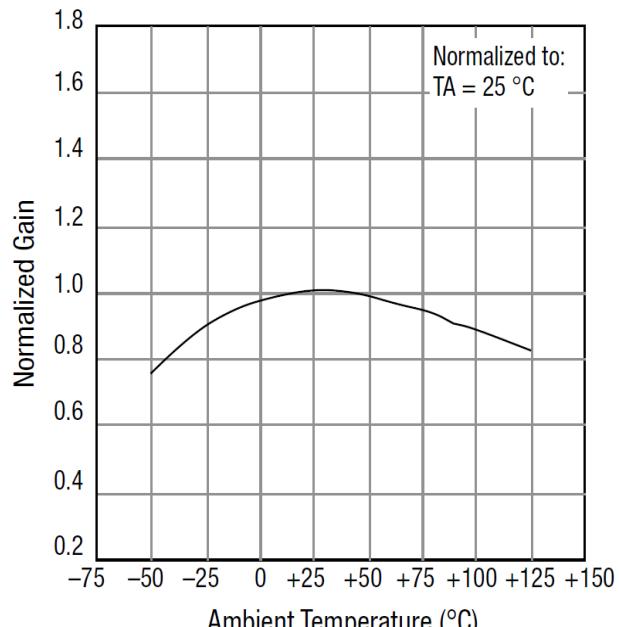


Figure 3. Normalized Gain vs Temperature

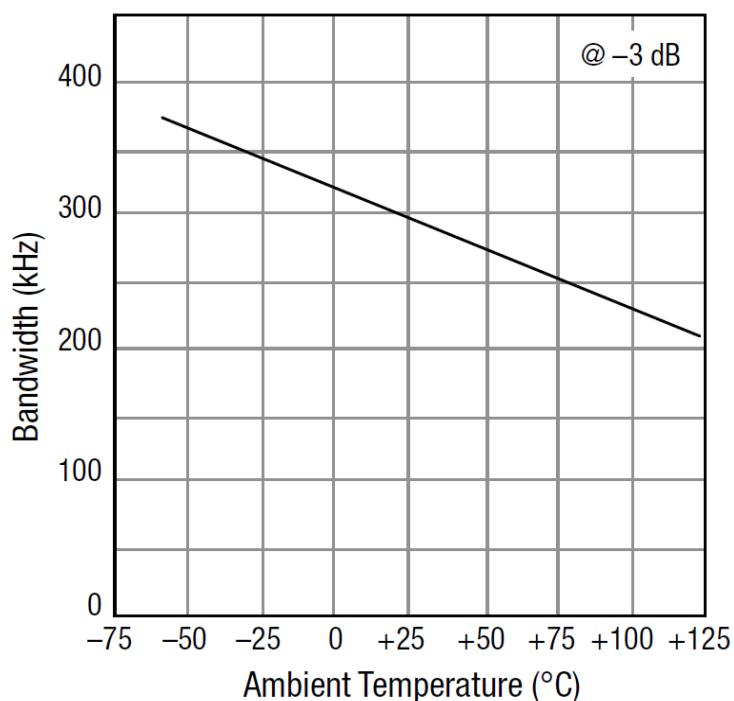


Figure 4. Bandwidth vs Temperature

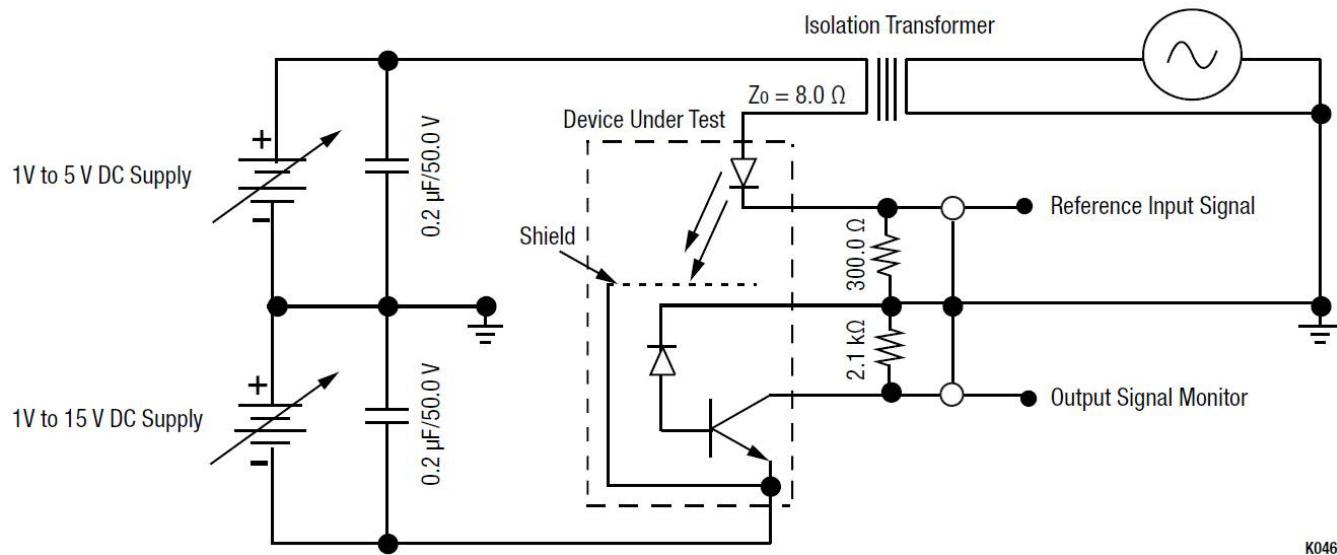


Figure 5. Gain and Bandwidth Test Circuit

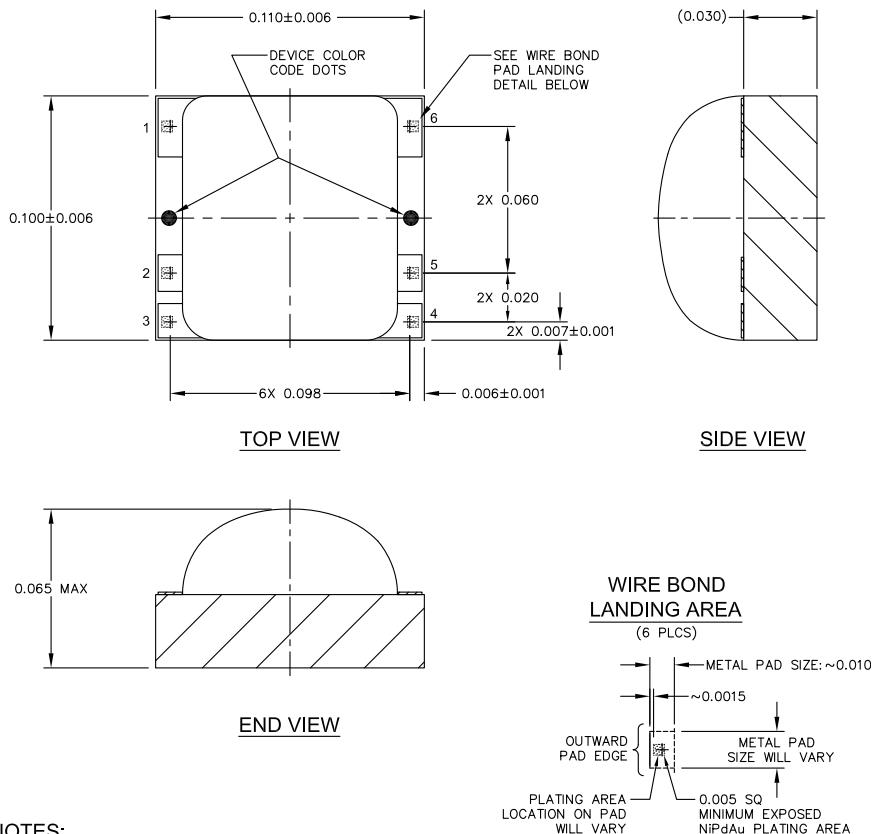


Figure 6. Package Dimensions

Ordering Information

Part Number	Description
OLI303	Miniature Wide Bandwidth Optocoupler for Hybrid Assembly

Copyright © 2012-2015, 2017, 2025, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc., and its subsidiaries ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE INFORMATION IN THIS DOCUMENT AND THE MATERIALS AND PRODUCTS DESCRIBED THEREIN ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not designed, intended, authorized, or warranted for use or inclusion in life support or life endangering applications, devices, or systems where failure or inaccuracy might cause death or personal injury. Skyworks customers agree not to use or sell the Skyworks products for such applications, and further agree to, without limitation, fully defend, indemnify, and hold harmless Skyworks and its agents from and against any and all actions, suits, proceedings, costs, expenses, damages, and liabilities including attorneys' fees arising out of or in connection with such improper use or sale.

Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters. Customers are solely responsible for their products and applications using the Skyworks products.

"Skyworks" and the Skyworks Starburst logo are registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.