


**FEATURES**

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O.
- Flame Retardant Epoxy Molding Compound.
- Exceeds environmental standards of MIL-S-19500/228
- Low power loss, high efficiency.
- Low forward voltage, high current capability
- High surge capacity.
- Super fast recovery times, high voltage.
- Epitaxial chip construction.


**MECHANICAL DATA**

TO-220-2

- Case: TO-220-2 Molded plastic
- Terminals: Lead solderable per MIL-STD-750, Method 2026
- Polarity: As marked.
- Standard packaging: Any
- Weight: 0.0655 ounces, 1.859 grams.

**MAXIMUM RATING AND ELECTRICAL CHARACTERISTICS**

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load.

For capacitive load, derate current by 20%

| PARAMETER                                                                                         | SYMBOL          | MUR1600G | MUR1610G | MUR1610AG   | MUR1620G | MUR1630G | MUR1640G | MUR1660G | UNITS          |
|---------------------------------------------------------------------------------------------------|-----------------|----------|----------|-------------|----------|----------|----------|----------|----------------|
| Maximum Recurrent Peak Reverse Voltage                                                            | $V_{RRM}$       | 50       | 100      | 150         | 200      | 300      | 400      | 600      | V              |
| Maximum RMS Voltage                                                                               | $V_{RMS}$       | 35       | 70       | 105         | 140      | 210      | 280      | 420      | V              |
| Maximum DC Blocking Voltage                                                                       | $V_{DC}$        | 50       | 100      | 150         | 200      | 300      | 400      | 600      | V              |
| Maximum Average Forward Current at $T_c = 90^\circ C$                                             | $I_{F(AV)}$     |          |          |             | 16.0     |          |          |          | A              |
| Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC method) | $I_{FSM}$       |          |          |             | 125      |          |          |          | A              |
| Maximum Forward Voltage at 8A                                                                     | $V_F$           |          | 0.95     |             |          | 1.30     | 1.70     |          | V              |
| Maximum DC Reverse Current at $T_j = 25^\circ C$<br>Rated DC Blocking Voltage $T_j = 100^\circ C$ | $I_R$           |          |          | 1.0         | 500      |          |          |          | $\mu A$        |
| Maximum Reverse Recovery Time (Note 2)                                                            | $t_{rr}$        |          |          | 35          |          |          |          |          | $n s$          |
| Typical Junction capacitance (Note 1)                                                             | $C_J$           |          |          | 62          |          |          |          |          | $pF$           |
| Typical Thermal Resistance                                                                        | $R_{\theta JC}$ |          |          | 3.0         |          |          |          |          | $^\circ C / W$ |
| Operating and Storage Temperature Range                                                           | $T_J, T_{STG}$  |          |          | -50 to +150 |          |          |          |          | $^\circ C$     |

**NOTES:**

1. Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
2. Reverse Recovery Test Conditions:  $I_F = .5A$ ,  $I_R = 1A$ ,  $I_{rr} = .25A$ .
3. Both Bonding and Chip structure are available.

## RATING AND CHARACTERISTIC CURVES

Fig.1-FORWARD CURRENT DERATING CURVE

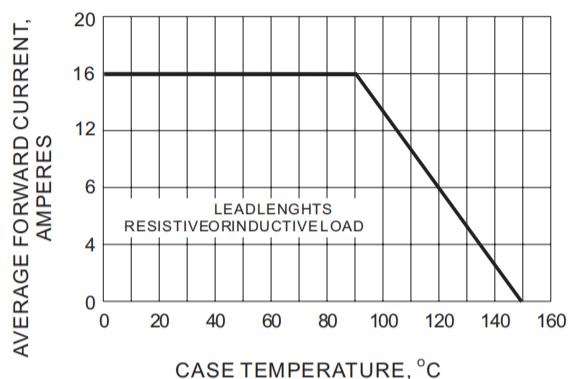



Fig.2-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTIC

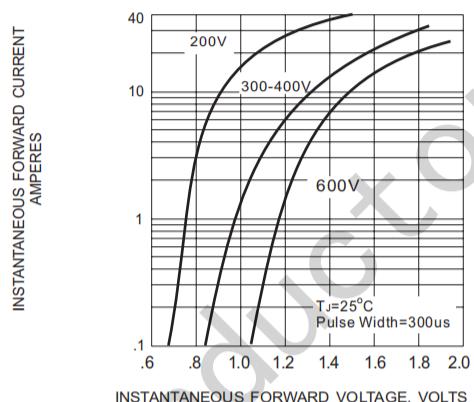



FIG.3-TYPICAL REVERSE CHARACTERISTICS

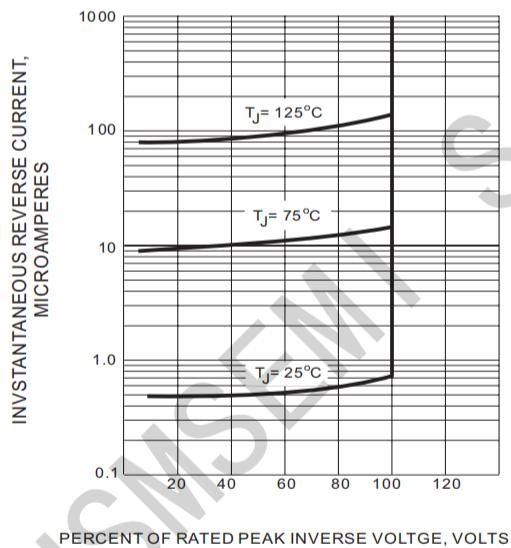



Fig.4-MAXIMUM NON-REPETITIVE SURGE CURRENT

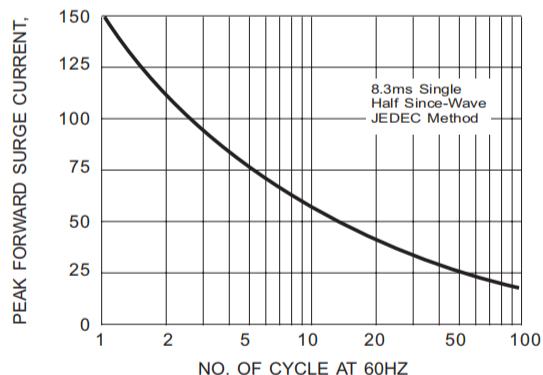
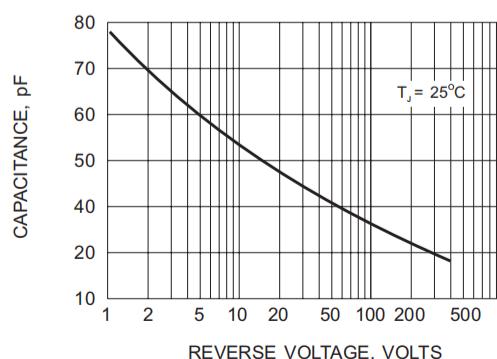




Fig.5-TYPICAL JUNCTION CAPACITANCE

