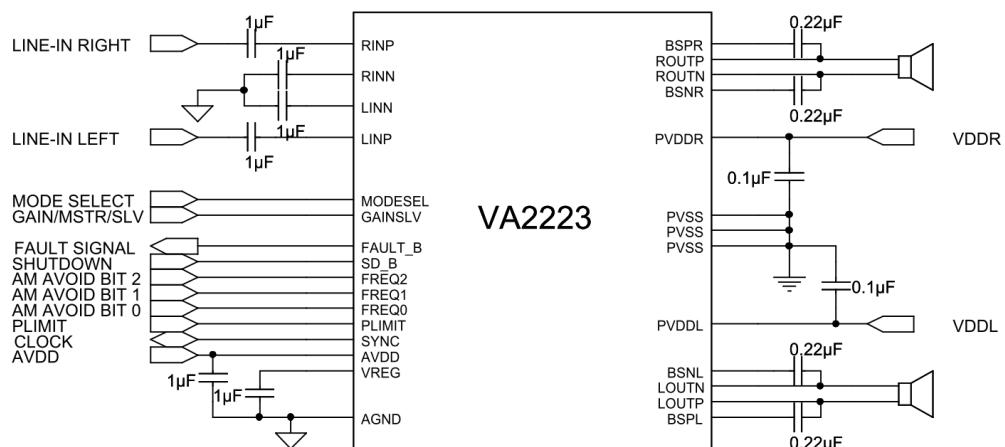


Filterless Class D Audio Amplifier

General Description


The VA2223 is a cost-effective filter-less Class D stereo audio power amplifier that operates in wide range of various power supplies. VA2223 provide gain control with simple voltage dividers. VA2223 can output 30W per channel into 4Ω or 8Ω load with lower supply current and fewer external components for driving bridged-tied stereo speaker directly. Five different PWM frequency adjustment makes VA2223 is suitable for any consumer electronics especially for high power output speakers. With the function of power limit, the speakers could be operated safely and the input signal would be also normalized.

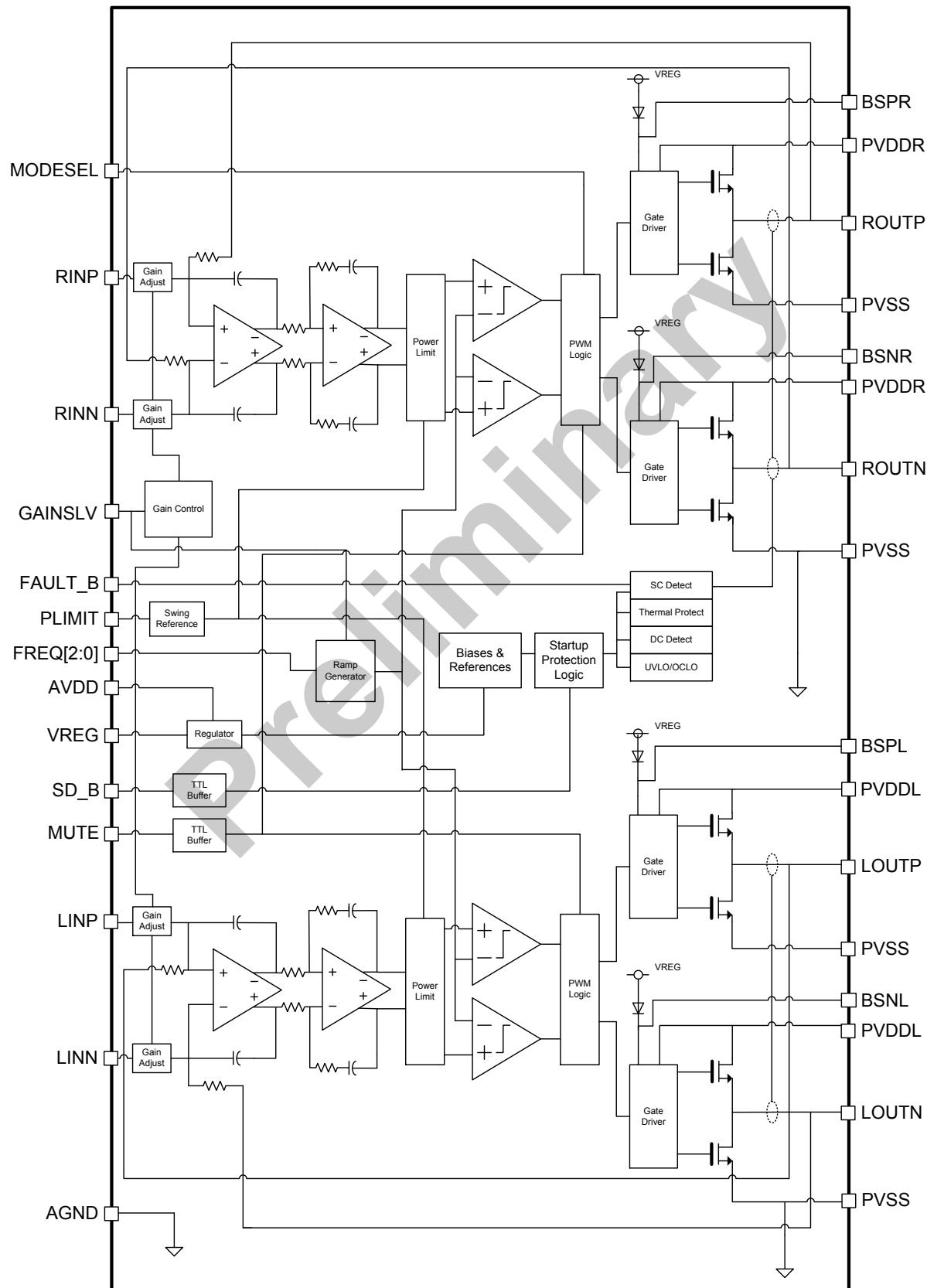
VA2223 operates with high efficiency energy conversion up to 90% (8Ω Load) so that the external heat sink can be eliminated while playing music.

VA2223 also integrates Anti-Pop, Output Short & Over-Heat Protection Circuitry to ensure device reliability. This device also provides the DC detect and protection scheme to prevent the damage of speaker voice coils.

The VA2223 is available in TSSOP-32 green package with exposed pad.

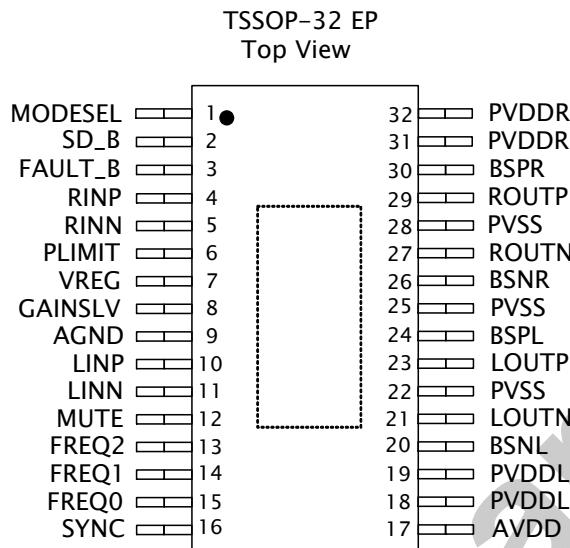
Typical Application

Features


- Operation Voltage from 4.5V to 26V
- Maximum 90% Efficiency with an 8Ω Speaker
- 2x30W@8Ω, THD+N <2% at 24V
- 2x30W@4Ω, THD+N =1% at 18V
- 1x50W@4Ω, THD+N=10% at 18V (PBTL)
- 1x60W@3Ω, THD+N<1% at 21V (PBTL)
- Multiple Switching Frequencies for AM Avoidance
- Optional Clock Master/Slave Synchronization
- 4/5 Segments Configurable PWM Frequency: 400kHz/500kHz/600kHz/1MHz/1.2MHz
- Voltage-Divider Selectable Gain Settings
- Excellent EMI/EMC Performance
- Scalable Power Limit Function
- Fault Indication Output Terminal
- Speaker DC Detection and Protection
- Parallel BTL Speaker Driving Connection
- Thermal Protection with Auto-Recovery
- Speaker Protection Circuitry
- Short Circuit and Thermal Protection
- RoHS 2.0 compliant TSSOP-32 Green Package with Exposed Pad

Applications

- LCD TV
- Multimedia Speaker
- Aftermarket Automotive
- Sound Bar and Boombox



Functional Block Diagram

Pin Assignments And Descriptions

No.	Pin	I/O/P	Function Description
1	MODSEL	I	Mode selection. Low for BD mode, HIGH for 1SPW mode. TTL Logic levels with compliance to AVDD. For VA2223TSG32, this pin is pulled down.
2	SD_B	I	Shutdown control terminal. Low active. TTL Logic levels with compliance to AVDD.
3	FAULT_B	OD	Fault status indication. Open drain output for over-temperature, DC detection and over-current protection. HIGH = Normal operation, LOW = Fault condition.
4	RINP	I	Right channel positive audio signal input.
5	RINN	I	Right channel negative audio signal input.
6	PLIMIT	I	Power Limit Level Adjust. Connect a resistor divider from VREG to AGND to set power limit. Connect to VREG directly for no power limit.
7	VREG	O	Regulated voltage for gate driver. Nominal voltage is 5.75V.
8	GAINSLV	I	Gain and Master/Slave selection. Use recommended voltage divider network to specify Master/Slave role and gain.
9	AGND	P	Analog ground.
10	LINP	I	Left channel positive audio signal input. Tie this pin low if need to bridge rear side of outputs.
11	LINN	I	Left channel negative audio signal input. Tie this pin low if need to bridge rear side of outputs.
12	MUTE	I	Mute signal for fast disable/enable of outputs (HIGH = outputs Hi-Z, LOW = outputs enabled). TTL logic levels with compliance to AVDD.
13	FREQ2	I	Frequency selection Bit 2.
14	FREQ1	I	Frequency selection Bit 1.
15	FREQ0	I	Frequency selection Bit 0.
16	SYNC	I/O	Clock I/O for synchronizing multiple Class D amplifiers. Clock Master/Slave is determined by GAINSLV terminal.
17	AVDD	P	Analog power supply.
18,19	PVDDL	P	Drive stage power supply.
20	BSNL	-	Bootstrap I/O for left channel negative high-side switch.
21	LOUTN	O	Left channel negative output.
22	PVSS	P	Driver stage power ground.
23	LOUTP	O	Left channel positive output.
24	BSPL	-	Bootstrap I/O for left channel positive high-side switch.
25	PVSS	P	Driver stage power ground.
26	BSNR	-	Bootstrap I/O for right channel negative high-side switch.
27	ROUTN	O	Right channel negative output.
28	PVSS	P	Driver stage power ground.
29	ROUTP	O	Right channel positive output.
30	BSPR	-	Bootstrap I/O for right channel positive high-side switch.
31,32	PVDDR	P	Drive stage power supply.
EP	AGND	P	Exposed Pad. Connect the pad to analog ground with large cooper size for good heat sinking.

Absolutely Maximum Ratings

Over operating free-air temperature range, unless otherwise specified (*1)

Symbol	Parameter	Limit	Unit
V_{DD} (PVDD, PVDDR, AVDD)	Supply voltage	-0.3 to 30	V
V_I (FREQ0, FREQ1, FREQ2, MODESEL, MUTE, SD_B)	Input voltage	-0.3 to $V_{DD}+0.3$	V
V_I (PLIMIT, GAINSLV, SYNC)	Input voltage	-0.3 to $V_{REG}+0.3$	V
V_I (LINN, RINN, LINP, RINP)	Analog Input voltage	-0.3 to 6.5	V
T_A	Operating free-air temperature range	-40 ~ +85	°C
T_J	Operating junction temperature range ^(*2)	-40 to +150	°C
T_{STG}	Storage temperature range	-65 to 150	°C
$R_{(LOAD)}$	Minimum load resistance	4 (BTL Stereo) 4 (PBTL mode $\geq 12V$) (Heatsink Required) 2 (PBTL mode $< 12V$) (Heatsink Required)	Ω
Electrostatic discharge	Human body model	± 2	kV
Electrostatic discharge	Machine model	± 200	V
$\theta_{JC(TSSOP32)}$	Thermal resistance (Junction to Case)	14	°C/W
$\theta_{JA(TSSOP32)}$	Thermal resistance (Junction to Air)	33	°C/W

(*1): Stress beyond those listed at "absolute maximum rating" table may cause permanent damage to the device. These are stress rating ONLY. For functional operation are strongly recommend follow up "recommended operation conditions" table.

Recommended Operating Conditions

Over operating free-air temperature range, unless otherwise specified.

Symbol	Parameter	Test Condition	Specification		Unit
			Min	Max	
V_{DD}	Supply voltage	PVDD, PVDDR, AVDD	4.5	26	V
V_{IH}	High level input voltage (FREQ0, FREQ1, FREQ2, MODESEL, MUTE, SD_B, SYNC)	$V_{DD}=24V$	2		V
V_{IL}	Low level input voltage (FREQ0, FREQ1, FREQ2, MODESEL, MUTE, SD_B, SYNC)	$V_{DD}=24V$		0.8	V
V_{OL}	Low level output voltage (FAULT_B)	$V_{DD}=24V$, $R_{PULL}=100k\Omega$		0.8	V
I_{IH}	High level input current	$V_{DD}=18V$, $V_I=2V$, for FREQ0, FREQ1, MODESEL, MUTE, SD_B		50	μA
L_{LOAD}	Minimum load inductance		1		μH
T_A	Operating free-air temperature		-40	85	°C

Electrical Characteristics

$T_A = 25^\circ\text{C}$, $V_{DD} = 12\text{V}$, $R_L=4\Omega$, GAIN=20dB, unless otherwise noted.

Symbol	Parameter	Test Condition	Specification			Unit
			Min	Typ.	Max	
$ V_{OS} $	Output offset voltage (measured differentially)	$V_i=0\text{V}$		1.5	15	mV
I_Q	Quiescent current	$SD_B=2\text{V}$, No load		25	40	mA
I_{SD}	Shutdown current	$SD_B=0.8\text{V}$, No load		250	500	μA
t_{ON}	Shutdown turn-on time	$SD_B=2\text{V}$		15		ms
t_{OFF}	Shutdown turn-off time	$SD_B=0.8\text{V}$		2		μs
f_{osc}	Internal oscillation frequency	$FREQ2=0$, $FREQ0=0$, $FREQ1=0$		400		kHz
		$FREQ2=0$, $FREQ0=1$, $FREQ1=0$		500		
		$FREQ2=0$, $FREQ0=0$, $FREQ1=1$		600		
		$FREQ2=0$, $FREQ1=1$, $FREQ0=1$		1000		
		$FREQ2=1$, $FREQ1=0$, $FREQ0=0$		1200		
A	Amplifier gain	$R_{DOWN}=5.6\text{k}\Omega$, $R_{UP}=\text{Open}$		20		dB
		$R_{DOWN}=27\text{k}\Omega$, $R_{UP}=100\text{k}\Omega$		26		
		$R_{DOWN}=39\text{k}\Omega$, $R_{UP}=100\text{k}\Omega$		32		
		$R_{DOWN}=47\text{k}\Omega$, $R_{UP}=75\text{k}\Omega$		36		
$R_{DS(ON)}$	Drain-Source ON resistance ⁽¹⁾	$V_{DD}=12\text{V}$, $I_{OUT}=500\text{mA}$	High Side	100		m Ω
			Low Side	100		
V_{REG}	Regulator output	$I_{VREG} = 100\mu\text{A}$, $V_{DD}=7\text{~}26\text{V}$	5.55	5.75	5.95	V
t_{DC-DET}	DC detect time			420		ms
t_{TRIP}	Over-temperature threshold			170		°C
$t_{HYSTERSIS}$	OTP hysteresis			20		°C
I_{OCP}	Over-current trap threshold			8		A

(1) Design center value.

Operating Characteristics

$V_{DD}=12\text{V}$, $A_v=20\text{dB}$, $T_A = 25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Test Condition	Specification			Unit
			Min	Typ.	Max	
P_O	Output power	$THD+N=1\%$, $f=1\text{kHz}$, $R_L=8\Omega$	$V_{DD} = 24\text{V}^1$	28		W
			$V_{DD} = 18\text{V}$	19		
		$THD+N=10\%$, $f=1\text{kHz}$, $R_L=4\Omega$	$V_{DD} = 18\text{V}^1$	39		
			$V_{DD} = 12\text{V}$	18.5		
		$THD+N=10\%$, $f=1\text{kHz}$, $R_L=3\Omega$, PBTL, $V_{DD} = 21\text{V}^1$		80		
THD+N	Total harmonic distortion plus noise	$V_{DD}=12\text{V}$, $P_O=10\text{W}$, $R_L=4\Omega$, $f=1\text{kHz}$		0.03		%
$ V_{OS} $	Offset voltage			20		mV
$ K_{SVR} $	Supply ripple rejection ration	Input AC-Grounded, $C_i=1\mu\text{F}$, $f=1\text{kHz}$		70		dB
$ SNR $	Signal-to-Noise ratio	A-weighted, $THD+N=1\%$, $R_L=8\Omega$		97		dB
V_n	Output voltage noise	$C_i=1\mu\text{F}$, $A=26\text{dB}$, $f=20\text{Hz}$ to 20kHz , A-weighted, Input AC-Grounded		80		μV_{RMS}
$ CMRR $	Common mode rejection ratio	$V_{DD}=12\text{V}$, $V_{IC}=1\text{V}_{\text{PP}}$	$f=120\text{Hz}$	68		dB
Z_i	Input impedance	Gain=20dB		60		k Ω
Crosstalk	Channel separation	$V_O=1\text{W}$, $f=1\text{kHz}$, Gain=20dB		93		dB

(1) Heat-sink is required.

Functional Descriptions

Gain Settings

The gain of the VA2223 can be simply set by the voltage divider connected to GAINSLV terminal. The gain, resistor ratios and corresponding input impedance are listed in Table 1. Please note that the gain setting can not be change on the fly, that is, if the gain setting is changed and the VA2223 needs to be power-recycled to take effect.

The input resistance is depended on the gain setting. Since the gain setting is determined by the ratio of the internal feedback resistive network, the variation of the gain is small. But the absolute value of the input resistance may shift by $\pm 20\%$ at the same gain. In actual design cases, 80% of nominal value should be assumed as the input resistance of VA2223 in the input network of whole amplifier.

Mode	Gain	R_{DOWN}	R_{UP}	Input Impedance
Master	20dB	5.6k Ω	OPEN	60k Ω
Master	26dB	27k Ω	100k Ω	30k Ω
Master	32db	39k Ω	100k Ω	15k Ω
Master	36dB	47k Ω	75k Ω	9k Ω
Slave	20dB	51k Ω	51k Ω	60k Ω
Slave	26dB	75k Ω	47k Ω	30k Ω
Slave	32dB	100k Ω	39k Ω	15k Ω
Slave	36dB	100k Ω	16k Ω	9k Ω

Table 1. Gain Setting vs. Resistor Network

The VA2223 can be operated in either clock master mode or clock slave mode in multiple class D amplifier usage. In clock master mode, the SYNC pin is clock source. In clock slave mode the SYNC pin is an clock input terminal. TTL logic levels with compliance to VREG.

Amplifier Input Impedance

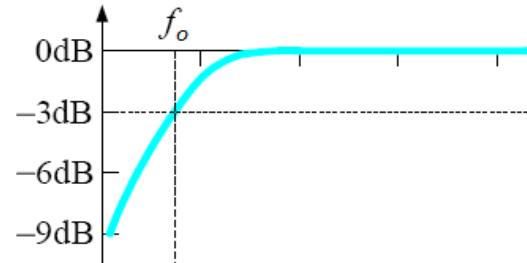


Figure 1. Cut-off point of high-pass filter

In most cases, no extra resistor needs to be added on the input of VA2223. The actual input resistor is already determined while selecting the gain. If a single capacitor is used in the input high-pass filter, the cut-off frequency f_o may vary with the change of gain setting. The -3dB point of the cut-off frequency can be calculated by the following equation,

$$f_o = \frac{1}{2\pi \times R_I \times C_I}$$

,where the R_I values is given in Table 1.

Power Timing Sequence

Most pop noises during power on/off period are caused by the charging/discharging of input capacitors. Input capacitors are being charged while the SD_B terminal is pulled up. Therefore an appropriate power on/off sequence is required with the control of SD_B and MUTE.

Initially the SD_B terminal shall be pulled low and the MUTE terminal shall be pulled high. After the powered up, the SD_B should be pulled-up first, delay for a while, and then pull low the MUTE terminal to enable audio output. With this sequence the pop noise can be eliminated.

To shutdown the amplifier, the MUTE terminal shall be pulled-up to mute the output first, delay for a while, and then pull down the SD_B terminal

Functional Descriptions (cont.)

to enter the shut down state. To prevent the pop noise caused by improper power off sequence, the SD_B terminal is forced no function when the MUTE terminal is pulled low (aka. unmute). The amplifier needs to be muted and then SD_B would be functional.

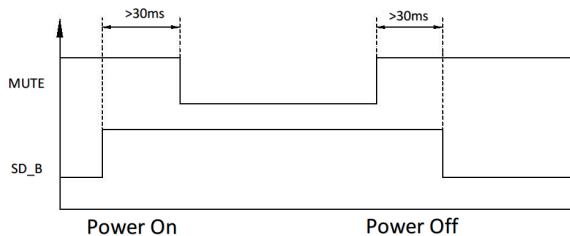


Figure 2. Recommended Power On/Off Sequence

Shutdown Operation

The VA2223 employs a state of shutdown mode to reduce supply current to the absolute minimum level during periods of nonuse for power conservation. This terminal should be held high during normal operation when the amplifier is in normal operating. When the amplifier is muted, pulling low causes the output drivers shutdown and the amplifier to enter a low-current state. Do not leave it unconnected, because there is no weakly pulling resistor inside the amplifier.

Remember that applying appropriate shutdown sequence described previously in prior to removing the power supply voltage so that power-off pop noise can be eliminated.

VREG Supply

The V_{REG} Supply is used to bias the gates of the output full-bridge upper half MOSFETs. It could be used to supply the PLIMIT pin and related voltage divider circuit. Add at least 1 μ F decoupling capacitor to ground at this terminal.

Fault Recovery Operation

The VA2223 builds in many protection schemes such as output short-circuit protection, over temperature protection and DC detection protection. Once any protection traps, the FAULT_B pin would be pulled low and usually the output driver will be shut down and enter to a high impedance state.

Since the fault latches the output, if automatic recovery from the fault condition is desired, the FAULT_B pin should be connected to the SD_B pin directly. This makes the FAULT_B pin to pull low the SD_B pin in fault condition and try to reset the amplifier. If the fault case is removed, the FAULT_B pin would be normally high after reset.

Short Circuit Protection

VA2223 has protection from over-current conditions caused by a short circuit on the output stage. The short circuit protection fault is reported on the FAULT_B pin as a low state. The amplifier outputs are switched to a high impedance state when the short circuit protection latch is engaged. The latch can be cleared by cycling the SD_B pin through the low state.

Speaker Protection

Due to the nature of Class D amplifiers, the speakers may have DC current if the audio inputs get DC voltage in any case. An output DC fault will shut down the audio amplifier and change the state of output into high impedance.

To resolve the case of DC input, it is good to treat it as very low frequency sine wave much lower than audio band such as 2Hz. Based on this criteria, a DC detect fault shall be issued when the output differential duty-cycle of either channel exceeds

Functional Descriptions (cont.)

14% for more than 420ms at the same polarity. This feature protects the speakers away from large currents.

The minimum differential input DC voltages required to trigger the DC detection fault are listed in the Table 2.

A_v (dB)	V_{IN} (mV, Differential)
36	17
32	28
26	56
20	112

Table 2. DC detect fault threshold

To resume the normal operation, it is necessary to power off the amplifier and then power on, cycling SD_B can not resume normal operation.

Thermal Protection

Thermal protection on the VA2223 prevents damage to the device when the internal die temperature exceeds 170°C. There is a $\pm 20^\circ\text{C}$ tolerance on this trip point from device to device. Once the die temperature exceeds the thermal set point, the device enters into the shutdown state and the outputs are disabled. This is not a latched fault. The thermal fault is cleared once the temperature of the die is reduced by 20°C. VA2223 will be back to normal operation at this point with no external system interaction.

Power Limit Operation

The voltage at PLIMIT terminal can be used to limit the power to levels below that which is possible based on the supply rail. Add a resistor divider from VREG to ground to set the voltage at the PLIMIT terminal. An external reference may also be used if precise limitation is required. Also add a 1 μF ca-

pacitor from this pin to ground.

The PLIMIT circuit sets a limit on the output peak-to-peak voltage. The limiting is done by limiting the duty cycle to fixed maximum value. This limit can be thought of as a “virtual” voltage rail which is lower than the supply connected to power rail. This “virtual” rail is 5 times the voltage at the PLIMIT pin. This output voltage can be used to calculate the maximum output power for a given maximum input voltage and speaker impedance.

$$P_{OUT} = \frac{\left(\left(\frac{R_L}{R_L + 2 \times R_S} \right) \times V_P \right)^2}{2 \times R_L}$$

$$V_P = 5 \times \text{PLIMIT voltage if PLIMIT} < 5 \times V_P$$

$$P_{OUT} (\text{with 10\% THD}) = 1.25 \times P_{OUT}$$

where R_S is the total series resistance including $r_{DS(ON)}$ and any resistance in the output filter. R_L is the load resistance. V_P is the peak amplifier of the output possible within the supply rail.

AM Radio EMI Reduction

For most countries the AM radio band is located in 522kHz~1701kHz. Due to the intrinsic of the switching topology, the fundamental frequency of switching frequency and its second harmonic would interfere the corresponding AM radio station seriously.

US	EU/China	Japan	PWM Freq.	FREQ2	FREQ1	FREQ0
530~540	531~540	531~540	400	0	0	0
540~910	540~909	540~909	500	0	0	1
920~1120	918~1116	918~1116	600 or 400	0	1 or 0	0
1130~1370	1125~1368	1125~1368	500	0	0	1
1380~1550	1377~1548	1377~1548	600 or 400	0	1 or 0	0
1560~1710	1557~1602	1557~1629	600 or 400	0	1 or 0	0

(units: kHz)

Table 3. Recommended switching frequencies

Functional Descriptions (cont.)

To achieve both of the advantage of switching amplifier and AM radio receiving performance, the VA2223 provides 4/5 selectable switching frequencies to change on demand to prevent the interfere. See Table 3 for recommended frequencies.

Preliminary

Application Information

Output Filter

Many applications require a ferrite bead filter at least. The ferrite filter reduces EMI above 30MHz. When selecting a ferrite bead, choose one with high impedance at high frequencies, but low impedance at low frequencies, be aware of its maximum current limitation.

Use an LC output filter if there are low frequency (<1 MHz) EMI sensitive circuits and there are long wires from the amplifier to the speaker.

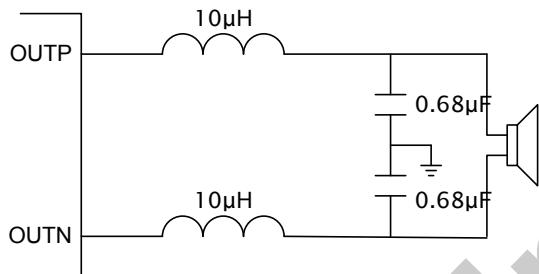


Figure 3. Typical LC Output Filter, Speaker Impedance=8Ω

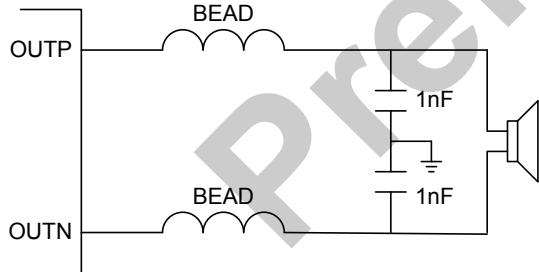


Figure 4. Typical Ferrite Chip Bead Output Filter

Inductors used in LC filters must be selected carefully. A significant change in inductance at the peak output current of the VA2223 will cause increased distortion. The change of inductance at currents up to the peak output current must be less than $0.1\mu\text{H}$ per amp to avoid this. Also note that smaller inductors than $10\mu\text{H}$ may cause an increase in distortion above what is shown in preceding graphs of THD versus frequency and output power. In all cases, avoid using inductors which value are less

than $10\mu\text{H}$.

Like the selection of the inductor in LC filters, the capacitor must be selected carefully, too. A significant change in capacitance at the peak output voltage of the VA2223 will cause increased distortion. LC filter capacitors should be double of DC voltage ratings of the peak application voltage (the power supply voltage) at least. In general, it is strongly recommended using capacitors with good temperature performance like X5R series.

Output Snubbers

In Figure 5, the 10nF capacitors in series with 3.3Ω resistors connected with the outputs of the VA2223 are snubber circuits. They smooth switching transitions and reduce overshoot and ringing. With these networks, THD+N can be improved at lower power levels and EMC can be reduced 2~4 dB at middle frequencies. They increase quiescent current by $3\text{mA}\sim 11\text{mA}$ depending on supply voltage.



Figure 5. Output Snubber Circuits

Low ESR Capacitors

Low ESR capacitors are highly recommended for this application. In general, a practical capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this unwanted resistor can eliminate the effects of the ideal ca-

Application Information (cont.)

pacitor. Place low ESR capacitors on supply circuitry can improve THD+N performance.

Boot-Strap Capacitors

The full H-bridge output stages use only MOS transistors. Therefore, they require bootstrap capacitors for the high side of each output to turn on correctly. A $0.22\mu\text{F}$ ceramic capacitor, rated for at least 25V, must be connected from each output to its corresponding boot-strap input. Specifically, one $0.22\mu\text{F}$ capacitor must be connected from OUTP to BSP, and one $0.22\mu\text{F}$ capacitor must be connected from OUTN to BSN.

The bootstrap capacitors connected between the BSP or BSN pins and corresponding output function as a floating power supply for the high side N-channel power MOSFET gate drive circuitry. During each high side switching cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-side MOSFETs turned on.

Decoupling Capacitors

VA2223 requires appropriate power decoupling to minimize the output total harmonic distortion (THD) and improves EMC performance. Power supply decoupling also prevents intrinsic oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling can be achieved by using two different types of capacitors which target different types of noise on the power supply lines. For higher frequency spikes, or digital hash on the rail, a good low ESR ceramic capacitor, for example $0.1\mu\text{F}$ to $10\mu\text{F}$, placed as close as possible to PVDDR and PVDDL pins works best. For filtering lower frequency noise, a larger low ESR aluminum electrolytic capacitor of $470\mu\text{F}$ or greater placed near the audio power amplifier is suggested. The $470\mu\text{F}$ capacitor also serves as local storage ca-

pacitor for supplying current during heavy power output on the amplifier outputs. The PVDDR and PVDDL terminals provide the power to the output transistors, so a $470\mu\text{F}$ or larger capacitor should be placed by PVDDR and PVDDL terminals as near as possible. A $10\mu\text{F}$ ceramic capacitor on each PVDDR/PVDDL terminal is also recommended.

Application Circuit

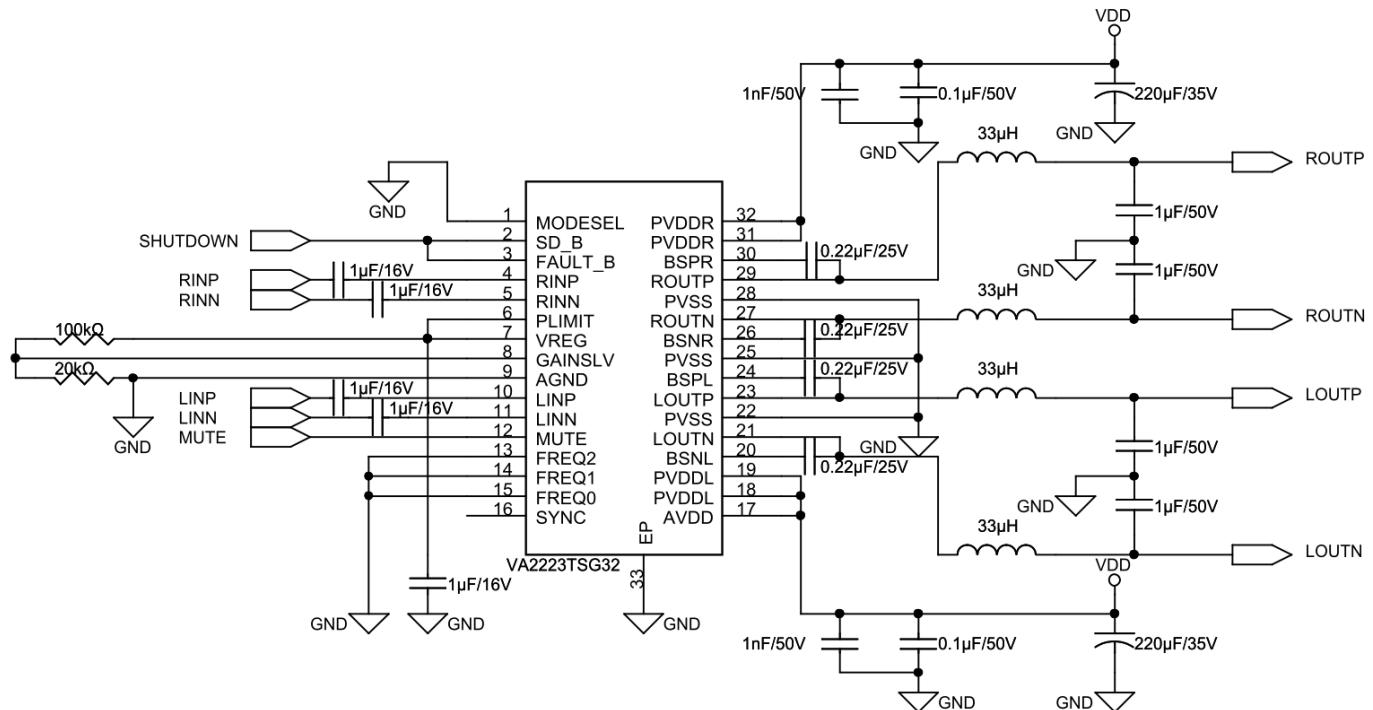


Figure 6. VA2223 TSSOP32 Stereo Reference Application

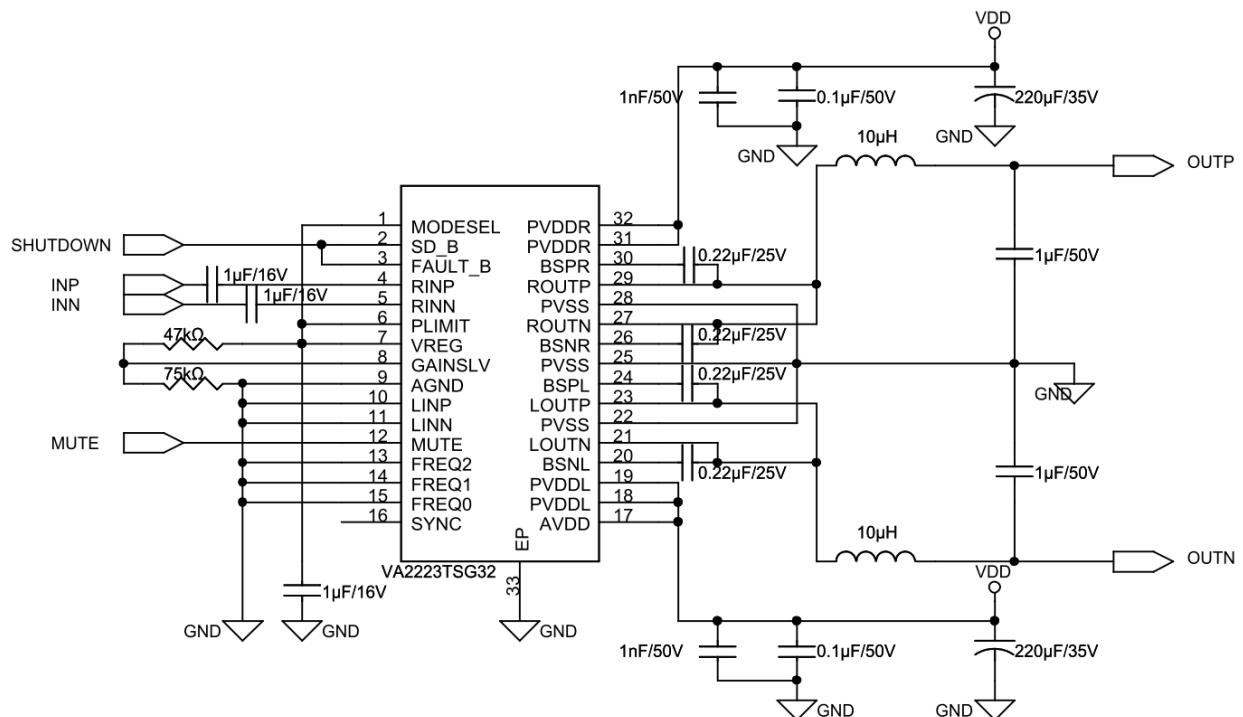


Figure 7. VA2223 TSSOP32 Mono Reference Application

Application Circuit

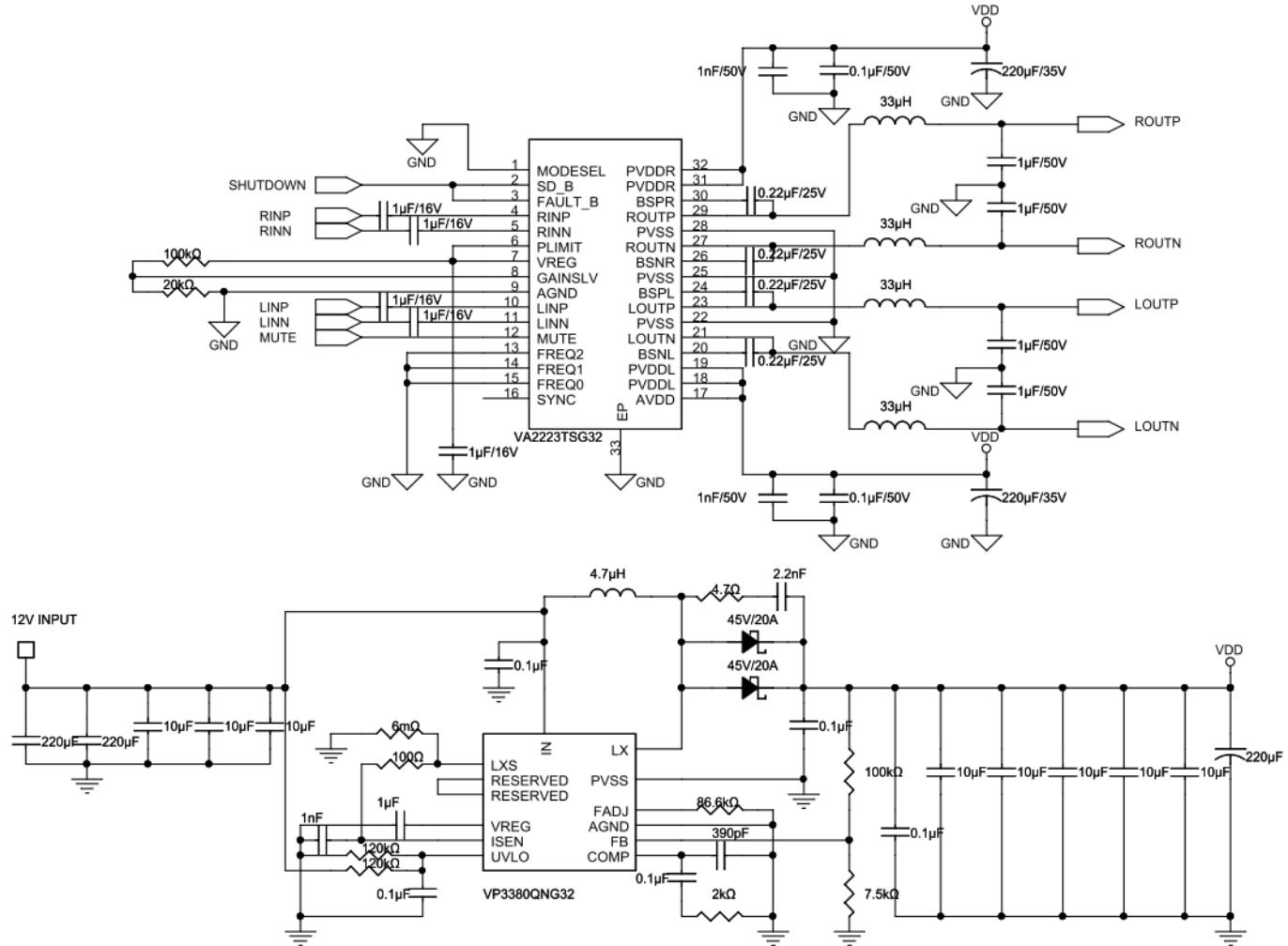
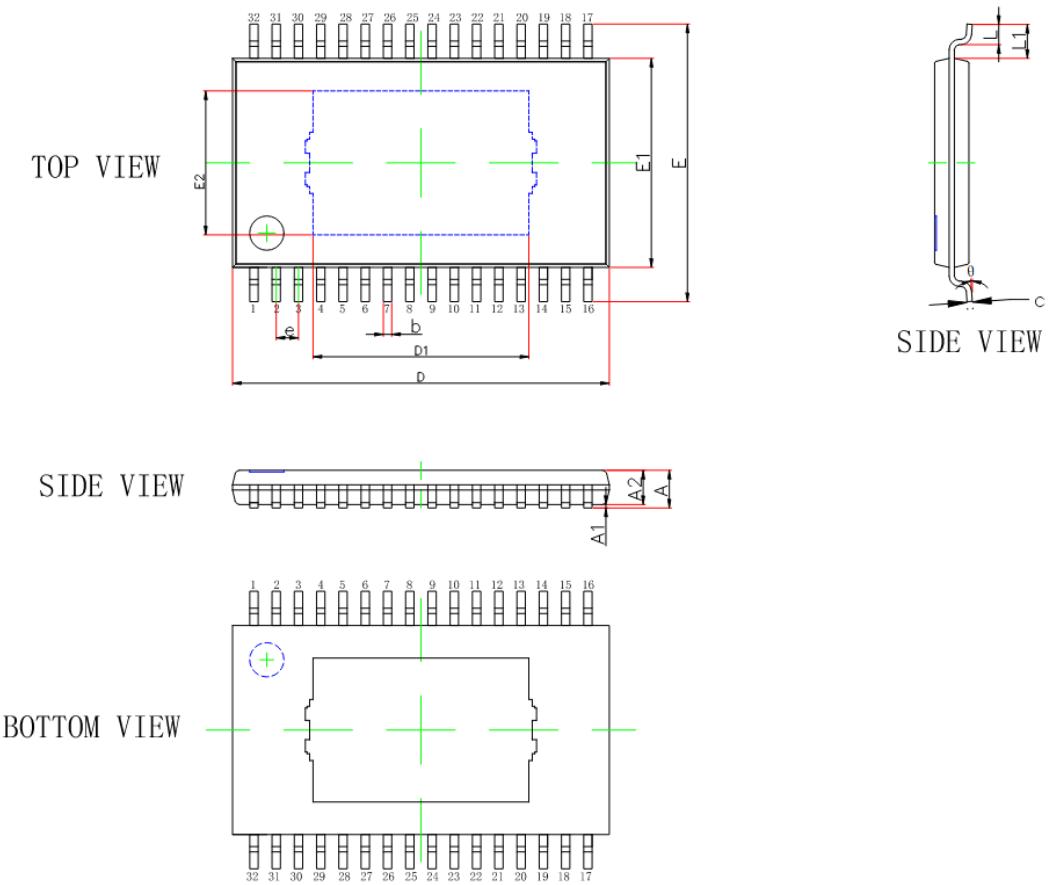



Figure 8. 30W Stereo Class D Amplifier Reference Boosted by VP3380

Package Information

TSSOP-32EP

SYMBOL	Dimensions In Millimeters			Dimension In Inches		
	Min.	Norm.	Max.	Min.	Norm.	Max.
A	—	—	1.200	—	—	0.047
A1	0.000	0.075	0.150	0.000	0.003	0.006
A2	0.900	1.000	1.100	0.035	0.039	0.043
b	0.200	—	0.280	0.008	—	0.011
c	0.150	—	0.190	0.006	—	0.007
D	10.900	11.000	11.100	0.429	0.433	0.437
D1	6.200	6.300	6.400	0.244	0.248	0.252
E	7.900	8.100	8.300	0.311	0.319	0.327
E1	6.000	6.100	6.200	0.236	0.240	0.244
E2	4.100	4.200	4.300	0.161	0.165	0.169
e	0.650 (BSC)			0.026(BSC)		
L	0.500	0.625	0.750	0.020	0.025	0.030
θ	0		8°	0		8°

Contact Information

Viva Electronics Incorporated

10F-1, No. 32, Gaotie 2nd Rd., Zhubei City, Hsinchu County, Taiwan, R.O.C.

Tel: 886-3-6579508

Fax: 886-3-6579509

WWW: <http://www.viva-elec.com.tw>

Sales: sales@viva-elec.com.tw

FAE Support: fae@viva-elec.com.tw

Preliminary

IMPORTANT NOTICE

Viva Electronics Incorporated reserves the right to make changes without further notice to any products or specifications herein. Viva Electronics Incorporated does not assume any responsibility for use of any its products for any particular purpose, nor does Viva Electronics Incorporated assume any liability arising out of the application or use of any its products or circuits. Viva Electronics Incorporated does not convey any license under its patent rights or other rights nor the rights of others.