

The documentation and process conversion measures necessary to comply with this document shall be completed by 29 June 2024.

INCH-POUND

MIL-PRF-19500/545L

w/AMENDMENT 2

29 March 2024

SUPERSEDING

MIL-PRF-19500/545L

w/AMENDMENT 1

27 September 2022

PERFORMANCE SPECIFICATION SHEET

TRANSISTOR, PNP, SILICON, POWER, ENCAPSULATED
(THROUGH-HOLE AND SURFACE MOUNT PACKAGES) AND UN-ENCAPSULATED (DIE),
TYPES 2N5151, 2N5153, JAN, JANTX, JANTXV, JANS, JANHC, AND JANKC

This specification is approved for use by all Departments
and Agencies of the Department of Defense.

The requirements for acquiring the product described herein shall consist of
this specification sheet and [MIL-PRF-19500](#).

1. SCOPE

* 1.1 Scope. This specification covers the performance requirements for PNP, silicon, power transistors for use in high-speed power-switching applications. Four levels of product assurance (JAN, JANTX, JANTXV, and JANS) are provided for each encapsulated device type and Two levels of product assurance (JANHC and JANKC) are provided for each unencapsulated device type as specified in [MIL-PRF-19500](#). Provisions for radiation hardness assurance (RHA) to eleven radiation levels ("E", "K", "U", "M", "D", "P", "L", "R", "F", "G", and "H" are provided for JANTXV and JANS product assurance levels.

1.2 Package outlines. The device package outlines are as follows: similar to TO-205 in accordance with [figure 1](#) and U3 in accordance with [figure 2](#) for all encapsulated device types. See figures [3](#), [4](#), and [5](#) for unencapsulated devices.

1.3 Maximum ratings. Unless otherwise specified, $T_C = +25^\circ\text{C}$.

Types	P_T $T_A = +25^\circ\text{C}$ (1)	P_T $T_C = +25^\circ\text{C}$ (1)	$R_{\theta JA}$ (2)	$R_{\theta JC}$ (2)	V_{CBO}	V_{CEO}	V_{EBO}	I_C	I_C (3)	Reverse pulse energy (4)	T _{STG} and T_J
	<u>W</u>	<u>W</u>	<u>°C/W</u>	<u>°C/W</u>	<u>V_{dc}</u>	<u>V_{dc}</u>	<u>V_{dc}</u>	<u>A_{dc}</u>	<u>A_{dc}</u>	<u>mi</u>	<u>°C</u>
2N5151, L	1	10	175	10	-100	-80	-5.5	-2	-10	15	-65 to + 200
2N5153, L	1	10	175	10	-100	-80	-5.5	-2	-10	15	-65 to + 200
2N5151U3	1.16	100	150 (5)	1.75	-100	-80	-5.5	-2	-10	15	-65 to + 200
2N5153U3	1.16	100	150 (5)	1.75	-100	-80	-5.5	-2	-10	15	-65 to + 200

(1) See [figures 6, 7, 8, and 9](#) for temperature-power derating curves.

(2) See [figures 10, 11, and 12](#) for transient thermal impedance graph.

(3) This value applies for $P_w \leq 8.3$ ms, duty cycle ≤ 1 percent.

(4) This rating is based on the capability of the transistors to operate safely in the unclamped inductive load energy test circuit, see subgroup 5 of the group A inspection table and [figure 13](#).

(5) Mounted on an FR4 printed circuit board.

Comments, suggestions, or questions on this document should be addressed to DLA Land and Maritime,
ATTN: VAC, P.O. Box 3990, Columbus, OH 43218-3990, or emailed to Semiconductor@dla.mil. Since contact
information can change, you may want to verify the currency of this address information using the ASSIST
Online database at <https://assist.dla.mil>.

AMSC N/A

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

FSC 5961

* 1.4 Primary electrical characteristics at $T_C = +25^\circ\text{C}$.

Limits	h_{FE2} (1) $V_{CE} = -5\text{ V}$ $I_C = -2.5\text{ A dc}$		$ h_{fe} $ $V_{CE} = -5\text{ V}$ $I_C = -500\text{ mA dc}$ $f = 10\text{ MHz}$		$V_{BE(sat)2}$ (1) $I_C = -5\text{ A dc}$ $I_B = -500\text{ mA dc}$	$V_{CE(sat)2}$ (1) $I_C = -5\text{ A dc}$ $I_B = -500\text{ mA dc}$	C_{obo} $V_{CB} = -10\text{ V dc}$ $I_E = 0$ $f = 1\text{ MHz}$
	2N5151 (2)	2N5153 (2)	2N5151 (2)	2N5153 (2)			
*	Min Max (TO-205)	30 90	70 200	6	7	<u>V dc</u> -2.2 -2.2	<u>V dc</u> -1.5 -1.5
*	Max (U3)	90	200				pF 250 250

(1) Pulsed, see [4.5.1](#).

(2) The limits specified apply to all package outlines unless otherwise stated.

1.5 Part or Identifying Number (PIN). The PIN is in accordance with [MIL-PRF-19500](#), and as specified herein. See [6.5](#) for PIN construction example and [6.6](#) for a list of available PINs.

1.5.1 JAN certification mark and quality level.

1.5.1.1 Quality level designators for encapsulated devices. The quality level designators for encapsulated devices that are applicable for this specification sheet from the lowest to the highest level are as follows: "JAN", "JANTX", "JANTXV", and "JANS".

1.5.1.2 Quality level designators for unencapsulated devices (die). The quality level designators for unencapsulated devices (die) that are applicable for this specification sheet from the lowest to the highest level are as follows: "JANHC" and "JANKC".

* 1.5.2 Radiation hardness assurance (RHA) designator. The RHA levels that are applicable for this specification sheet from lowest to highest are as follows: "E", "K", "U", "M", "D", "P", "L", "R", "F", "G", and "H").

1.5.3 Device type. The designation system for the device types of transistors covered by this specification sheet are as follows.

1.5.3.1 First number and first letter symbols. The transistors of this specification sheet use the first number and letter symbols "2N".

1.5.3.2 Second number symbols. The second number symbols for the transistors covered by this specification sheet are as follows: "5151" and "5153".

1.5.3.3 Suffix letters. The suffix letter "L" is used on devices that are packaged in the TO-205 package of [figure 1](#) that have a long lead length: 1.500 inches (38.10 mm) minimum and 1.750 inches (44.45 mm) maximum. Devices with no suffix have standard length leads of 0.5 inch (12.7 mm) minimum to .75 inch (19.1 mm) maximum in [figure 1](#). The suffix letters "U3" are used on devices that are packaged in the surface mount package of [figure 2](#).

1.5.4 Lead finish. The lead finishes applicable to this specification sheet are listed on [QPDSIS-19500](#).

1.5.5 Die identifiers for unencapsulated devices (manufacturers and critical interface identifiers). The manufacturer die identifiers that are applicable for this specification sheet are "B", "C" and "D".

1.6 Radiation features. The following radiation features are applicable for RHA devices supplied to this specification sheet.

1.6.1 Maximum total ionizing dose (TID). The maximum TID that RHA devices were tested to in accordance with condition A (dose rate = 50 to 300 rad(Si)/s) of method 1019 of [MIL-STD-750](#) are as follows:

For device type 2N5151, 2N5151L, AND 2N5151U3: 300 krads(Si) 1/
For device type 2N5153, 2N5153L, AND 2N5153U3: 300 krads(Si) 1/

* 1.6.2 Maximum total ionizing dose (TID). The maximum TID that RHA devices were tested to in accordance with condition D (dose rate \leq 10 mrad(Si)/s) of method 1019 of [MIL-STD-750](#) are as follows:

* For device type 2N5153, 2N5153L, AND 2N5153U3: 100 krads(Si) 2/

- 1/ The manufacturers supplying these device types have performed characterization testing in accordance with condition A (dose rate = 50 to 300 rad(Si)/s) of method 1019 of [MIL-STD-750](#). The radiation end point limits are guaranteed only to a maximum TID level of 300 krads(Si).
- * 2/ The manufacturers supplying these device types have performed characterization testing in accordance with condition D (dose rate \leq 10 mrad(Si)/s) of method 1019 of [MIL-STD-750](#). The radiation end point limits are guaranteed only to a maximum TID level of 100 krads(Si).

Symbol	Dimensions				Notes
	IN Min	IN Max	mm Min	mm Max	
CD	.305	.335	7.75	8.51	6
CH	.240	.260	6.10	6.60	
HD	.335	.370	8.51	9.40	
LC	.200	TP	5.08	TP	7
LD	.016	.021	0.41	0.53	8, 9
LL					8, 9, 13, 14
LU	.016	.019	0.41	0.48	8, 9
L ₁		.050		1.27	8, 9
L ₂	.250		6.35		8, 9
Q		.050		1.27	6
TL	.029	.045	0.74	1.14	4, 5
TW	.028	.034	0.71	0.86	3
r		.010		0.25	11
α	45°	TP	45°	TP	7
P	.100		2.54		

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Beyond r (radius) maximum, TW shall be held for a minimum length of .011 inch (0.28 mm).
4. TL measured from maximum HD.
5. Outline in this zone is not controlled.
6. CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
7. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
8. LU applied between L₁ and L₂. LD applies between L₂ and LL minimum. Diameter is uncontrolled in L₁ and beyond LL minimum.
9. All three leads.
10. The collector shall be electrically and mechanically connected to the case.
11. r (radius) applies to both inside corners of tab.
12. For transistor types 2N5151 and 2N5153, LL is .5 inch (13 mm) minimum, and .75 inch (19 mm) maximum.
13. For transistor types 2N5151L and 2N5153L, LL is 1.5 inch (38 mm) minimum and 1.75 inch (44.4 mm) maximum.
14. Lead designation, depending on device type, shall be as follows: lead numbering; lead 1 = emitter, lead 2 = base, and lead 3 = collector.

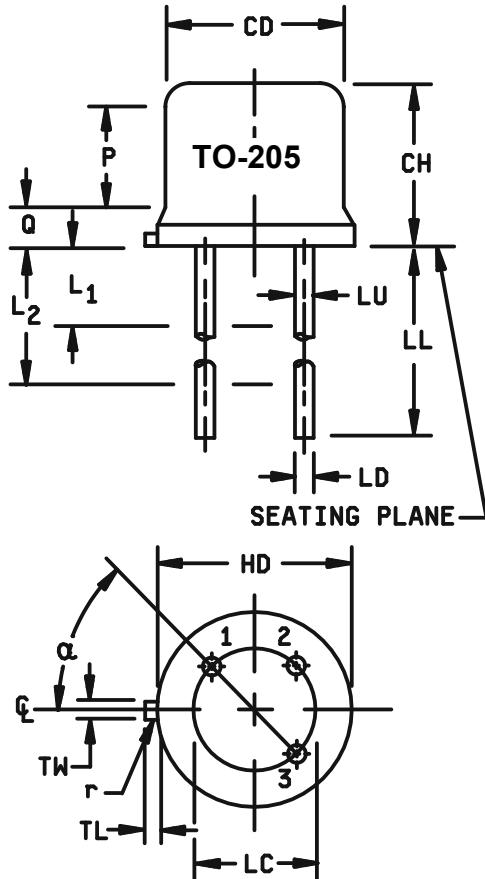
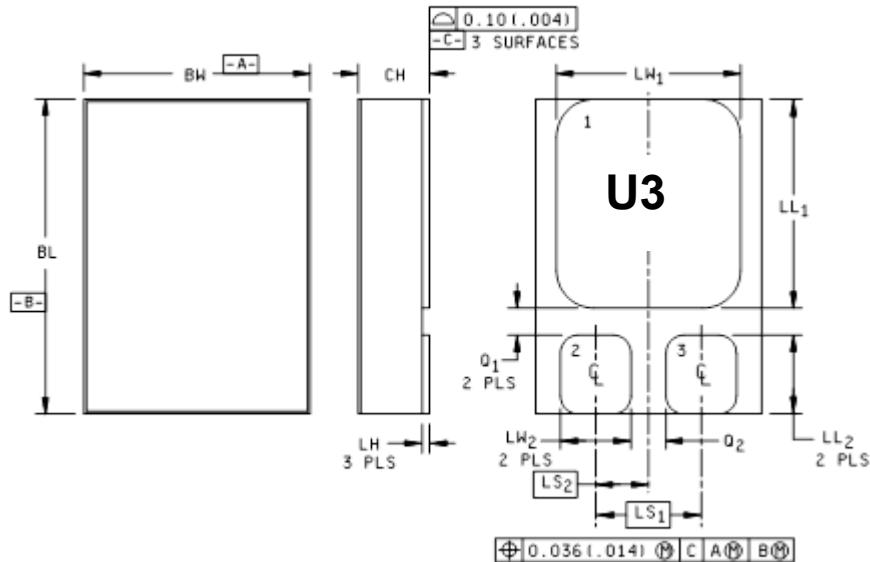



FIGURE 1. Physical dimensions (TO-205).

MIL-PRF-19500/545L
w/AMENDMENT 2

Symbol	Dimensions			
	IN Min	IN Max	mm Min	mm Max
BL	.395	.405	10.04	10.28
BW	.291	.301	7.40	7.64
CH	.1085	.1205	2.76	3.06
LH	.010	.020	0.25	0.51
LL1	.220	.230	5.59	5.84
LL2	.115	.125	2.93	3.17
LS1	.150 BSC		3.81 BSC	
LS2	.075 BSC		1.91 BSC	
LW1	.281	.291	7.14	7.39
LW2	.090	.100	2.29	2.54
Q1	.030		0.762	
Q2	.030		0.762	

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Terminal 1 - collector, terminal 2 - base, terminal 3 - emitter.

SCHEMATIC

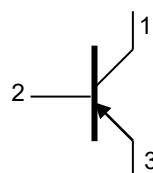
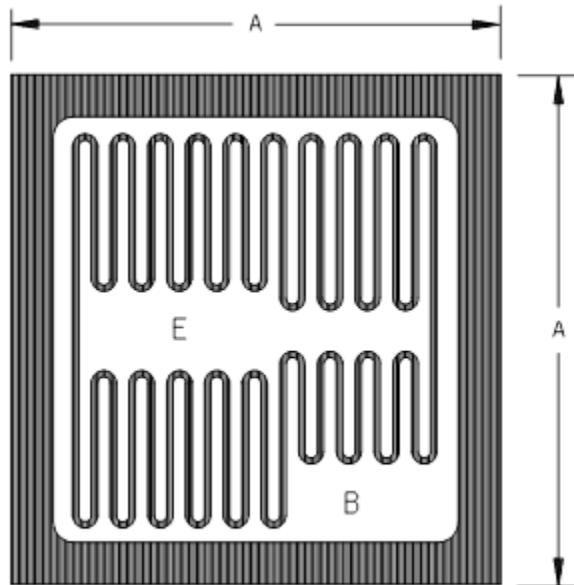
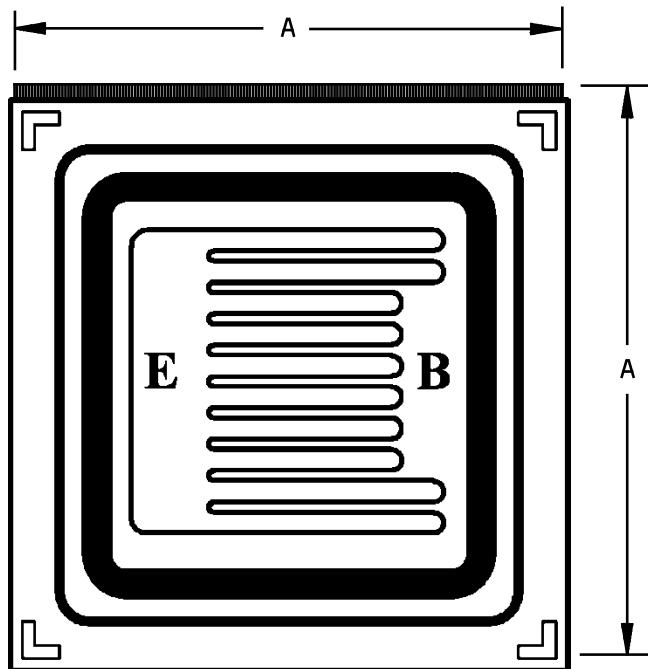



FIGURE 2. Physical dimensions and configuration for surface mount (U3).

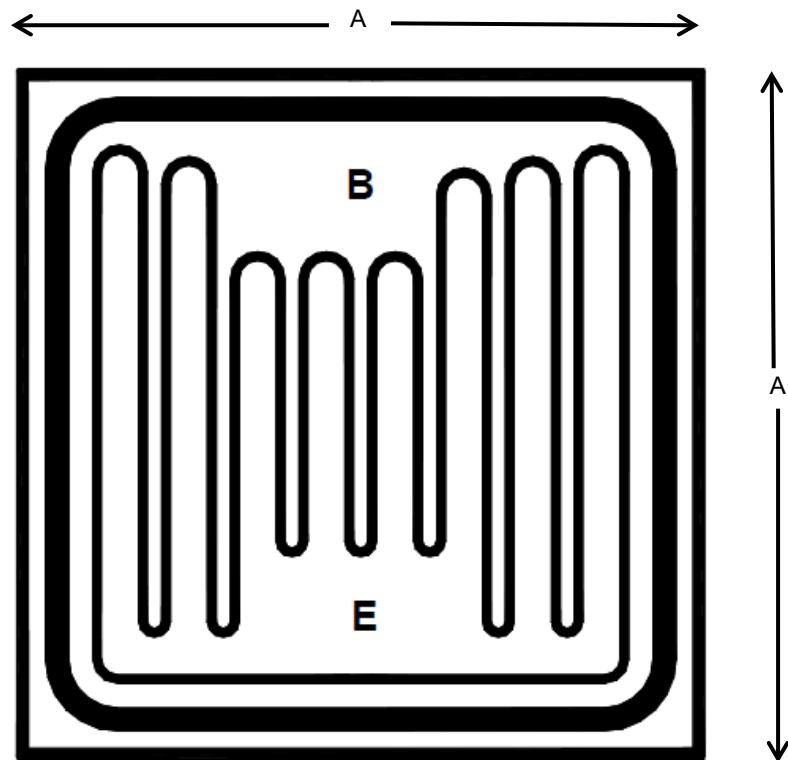

Ltr	Dimensions			
	in	in	mm	mm
	Min	Max	Min	Max
A	.100	.105	2.54	2.67

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Unless otherwise specified, tolerance is $\pm .005$ inch (0.13 mm).
4. The physical characteristics of the die are:
 - Thickness: .0078 inch (0.198 mm) nominal, tolerance is $\pm .005$ inch (0.13 mm).
 - Top metal: Aluminum, 25,000 Å minimum, 33,000 Å nominal.
 - Back metal: Gold 1,500 Å minimum, 2,500 Å nominal.
 - Back side: Collector.
 - Bonding pad: .012 inch (0.305 mm) min. x .030 inch (0.761 mm) minimum.

FIGURE 3. JANHC and JANKC (B-version) die dimensions.

MIL-PRF-19500/545L
w/AMENDMENT 2



Ltr.	Dimensions			
	IN	IN	mm	mm
	Min	Max	Min	Max
A	.126	.130	3.20	3.30

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. The physical characteristics of the die are:
 - Thickness: .010 inch (0.25 mm) \pm .0015 inch (0.038 mm) nominal.
 - Top metal: Aluminum 30,000 Å minimum, 33,000 Å nominal.
 - Back metal: A. Al/Ti/Ni/Ag15kÅ/2kÅ/7kÅ/7kÅ min. 18kÅ/3kÅ/10kÅ/10kÅ nom.
 - B. Gold 2,500 Å minimum, 3,000 Å nominal.
 - Back side: Collector.
 - Bonding pad: .012 inch (0.305 mm) min. x .030 inch (0.761 mm) minimum.

FIGURE 4. JANHC and JANKC (C-version) die dimensions.

Backside: Collector

LTR	Dimensions			
	IN	IN	mm	mm
	Min	Max	Min	Max
A	.118	.122	3.0	3.1

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Unless otherwise specified, tolerance is $\pm .005$ (0.13 mm).
4. The physical characteristics of the die are:
Thickness: .0135 inch (0.34 mm) nominal, tolerance is $\pm .0015$ inch (0.04 mm).
Top metal: Aluminum, 54,000 Å minimum, 60,000 Å nominal.
Back metal: Gold 6,400 Å minimum, 8,000 Å nominal.
Back side: Collector.
Bonding pad: B = .038 x .022 inch (0.97 x 0.56 mm)
E = .042 x .020 inch (1.07 mm x 0.51 mm)

FIGURE 5. JANHC and JANKC (D-version) die dimensions.

2. APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are specified in sections 3 and 4 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3 and 4 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 Specifications, standards, and handbooks. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

[MIL-PRF-19500](#) - Semiconductor Devices, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

[MIL-STD-750](#) - Test Methods for Semiconductor Devices.

(Copies of these documents are available online at <https://quicksearch.dla.mil>).

2.3 Non-Government publications. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

(Copies of these documents are available online at <https://www.asme.org>)

2.4 Order of precedence. Unless otherwise noted herein or in the contract, in the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 General. The individual item requirements shall be as specified in [MIL-PRF-19500](#) and as modified herein.

3.2 Qualification. Devices furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturer's list ([QML-19500](#)) before contract award (see [4.2](#) and [6.3](#)).

3.3 Abbreviations, symbols, and definitions. Abbreviations, symbols, and definitions used herein shall be as specified in [MIL-PRF-19500](#).

3.4 Interface and physical dimensions. Interface and physical dimensions shall be as specified in [MIL-PRF-19500](#), and [figure 1](#) (similar to TO-205), [figure 2](#) (U3), and figures [3](#), [4](#), and [5](#) (die dimensions) for JANHC and JANKC.

3.4.1 Current density. Current density of internal conductors shall be as specified in [MIL-PRF-19500](#).

3.4.2 Lead finish. Lead finish shall be solderable as defined in [MIL-PRF-19500](#), [MIL-STD-750](#), and herein. Where a choice of lead finish is desired, it shall be specified in the acquisition document (see [6.2](#)).

3.5 Radiation hardness assurance (RHA). Radiation hardness assurance requirements, PIN designators, and test levels shall be as defined in [MIL-PRF-19500](#).

3.6 Electrical performance characteristics. Unless otherwise specified herein, the electrical performance characteristics are as specified in [1.3](#), [1.4](#), and [table I](#) herein.

3.7 Electrical test requirements. The electrical test requirements shall be as specified in [table I](#).

3.8 Marking. Marking shall be in accordance with [MIL-PRF-19500](#).

3.9 Workmanship. Semiconductor devices shall be processed in such a manner as to be uniform in quality and shall be free from other defects that will affect life, serviceability, or appearance.

4. VERIFICATION

4.1 Classification of inspections. The inspection requirements specified herein are classified as follows:

- a. Qualification inspection (see [4.2](#)).
- b. Screening (see [4.3](#)).
- c. Conformance inspection (see [4.4](#) and [table I, II, III, and IV](#)).

4.2 Qualification inspection. Qualification inspection shall be in accordance with [MIL-PRF-19500](#) and as specified herein.

4.2.1 JANHC and JANKC qualification. JANHC and JANKC qualification inspection shall be in accordance with [MIL-PRF-19500](#).

4.2.2 Group E qualification. Group E inspection shall be performed for qualification or re-qualification only. In case qualification was awarded to a prior revision of the specification sheet that did not request the performance of [table IV](#) tests, the tests specified in [table IV](#) herein that were not performed in the prior revision shall be performed on the first inspection lot of this revision to maintain qualification.

4.3 Screening (JANS, JANTX, and JANTXV levels only). Screening shall be in accordance with table E-IV of [MIL-PRF-19500](#) and as specified herein. The following measurements shall be made in accordance with [table I](#) herein. Devices that exceed the limits of [table I](#) herein shall not be acceptable.

Screen	Measurements for JANS levels	Measurements for JANTX and JANTXV levels
3b	Not applicable	Not applicable
(1) 3c	Thermal impedance, method 3131 of MIL-STD-750 (see 4.3.3)	Thermal impedance, method 3131 of MIL-STD-750 (see 4.3.3)
9	I_{CES1} and h_{FE2}	Not applicable
10	48 hours minimum.	48 hours minimum.
11	I_{CES1} and h_{FE2} ; $\Delta I_{CES1} = 100$ percent of initial value or -100 nA dc, whichever is greater. $\Delta h_{FE2} = \pm 20$ percent	I_{CES1} and h_{FE2}
12	See 4.3.2	See 4.3.2
13	Subgroups 2 and 3 of table I herein; $\Delta I_{CES1} = 100$ percent of initial value or -100 nA dc, whichever is greater. $\Delta h_{FE2} = \pm 20$ percent	Subgroup 2 of table I herein; $\Delta I_{CES1} = 100$ percent of initial value or -100 nA dc, whichever is greater. $\Delta h_{FE2} = \pm 20$ percent

(1) Shall be performed anytime after temperature cycling, screen 3a, and JANTX and JANTXV levels do not need to be repeated in screening requirements.

4.3.1 Screening (JANHC and JANKC). Screening of JANHC and JANKC die shall be in accordance with [MIL-PRF-19500](#), "Discrete Semiconductor Die/Chip Lot Acceptance". Burn-in duration for the JANKC level follows JANS requirements; the JANHC follows JANTX requirements.

4.3.2 Power burn-in conditions. Power burn-in conditions are as follows: $V_{CB} = -10$ to -30 V dc, T_A = room ambient as defined in the general requirements of [4.5](#) of [MIL-STD-750](#). Power shall be applied to the device to achieve a junction temperature, $T_J = +175^\circ\text{C}$ minimum and a minimum $P_D = 75$ percent of P_T maximum rated as defined in [1.3](#) herein.

4.3.3 Thermal impedance. The thermal impedance measurements shall be performed in accordance with method 3131 of [MIL-STD-750](#) using the guidelines in that method for determining I_M , I_H , t_H , t_{MD} (and V_C where appropriate). The thermal impedance limit used in screen 3c of [4.3](#) herein and [table I](#) shall comply with the thermal impedance graph on [figures 10, 11, and 12](#) (less than or equal to the curve value at the same t_H time) and shall be less than the process determined statistical maximum limit as outlined in method 3131.

4.4 Conformance inspection. Conformance inspection shall be as specified herein.

4.4.1 Group A inspection. Group A inspection shall be conducted in accordance with [MIL-PRF-19500](#) and [table I](#) herein.

* 4.4.2 Group B inspection. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-VIA of [MIL-PRF-19500](#) (JANS) and [4.4.2.1](#) herein. See [4.4.2.2](#) herein JAN, JANTX, and JANTXV group B testing. Delta measurements shall be in accordance with [table III](#) herein.

[4.4.2.1](#) Quality level JANS, table E-VIA of [MIL-PRF-19500](#).

<u>Subgroup</u>	<u>Method</u>	<u>Conditions</u>
B4	1037	$V_{CB} = -40 \text{ V dc} \pm 1 \text{ V}$, adjust device current, or power, to achieve a minimum ΔT_J of $+100^\circ\text{C}$.
B5	1027	(NOTE: If a failure occurs, resubmission shall be at the test conditions of the original sample). $V_{CB} = -10 \text{ V dc}$; $P_D \geq 100$ percent of maximum rated P_T (see 1.3) $T_A \leq +35^\circ\text{C}$.
		Option 1: 96 hours minimum, sample size in accordance with table E-VIA of MIL-PRF-19500 , adjust P_D to achieve $T_J = +275^\circ\text{C}$ minimum.
		Option 2: 216 hours, sample size = 45, $c = 0$; adjust P_D to achieve $T_J = +225^\circ\text{C}$ minimum.
B6	3131	See 4.5.2 .

[4.4.2.2](#) Quality levels JAN, JANTX and JANTXV, table E-VIC of [MIL-PRF-19500](#). Separate samples may be used for each step. In the event of a group B failure, the manufacturer may pull a new sample at double size from either the failed assembly lot or from another assembly lot from the same wafer lot. If the new assembly lot option is exercised, the failed assembly lot shall be scrapped.

<u>Step</u>	<u>Method</u>	<u>Conditions</u>
1	1026	Steady-state life: 1,000 hours minimum, $V_{CB} = -10 \text{ V dc}$, power shall be applied to achieve $T_J = +150^\circ\text{C}$ minimum using a minimum of $P_D = 75$ percent of maximum rated P_T as defined in 1.3 . $n = 45$ devices, $c = 0$. The sample size may be increased and the test time decreased as long as the devices are stressed for a total of 45,000 device hours minimum, and the actual time of test is at least 340 hours.
2	1048	Blocking life, $T_A = +150^\circ\text{C}$, $V_{CB} = 80$ percent of rated voltage, 48 hours minimum. $n = 45$ devices, $c = 0$.
3	1032	High-temperature life (non-operating), $t = 340$ hours, $T_A = +200^\circ\text{C}$. $n = 22$, $c = 0$.

[4.4.2.3](#) Group B sample selection. Samples selected from group B inspection shall meet all of the following requirements:

- For JAN, JANTX, and JANTXV samples shall be selected randomly from a minimum of three wafers (or from each wafer in the lot) from each wafer lot. See [MIL-PRF-19500](#).
- Shall be chosen from an inspection lot that has been submitted to and passed group A, subgroup 2, conformance inspection. When the final lead finish is solder or any plating prone to oxidation at high temperature, the samples for life test (group B for JAN, JANTX, and JANTXV) may be pulled prior to the application of final lead finish.

4.4.3 Group C inspection. Group C inspection shall be conducted in accordance with the test and conditions specified for subgroup testing in table E-VII of [MIL-PRF-19500](#), and in [4.4.3.1](#) (JANS) and [4.4.3.2](#) (JAN, JANTX, and JANTXV) herein for group C testing. Delta measurements shall be in accordance with [table III](#) herein, and only apply to subgroup C6.

[4.4.3.1 Quality level JANS \(see table E-VII of MIL-PRF-19500\).](#)

<u>Subgroup</u>	<u>Method</u>	<u>Condition</u>
C2	2036	Test condition E; (method 2036 MIL-STD 750 not applicable for U3 devices).
C6	1026	1,000 hours at $V_{CB} = -10$ V dc; power shall be applied to achieve $T_J = +150^\circ\text{C}$ minimum and a minimum of $P_D = 75$ percent of maximum rated P_T as defined in 1.3 . The sample size may be increased and the test time decreased as long as the devices are stressed for a total of 45,000 device hours minimum, and the actual time of test is at least 340 hours. $n = 45$, $c = 0$.

[4.4.3.2 Quality levels JAN, JANTX and JANTXV \(see table E-VII of MIL-PRF-19500\).](#)

<u>Subgroup</u>	<u>Method</u>	<u>Condition</u>
C2	2036	Test condition E; not applicable for U3 devices.
C5	3131	R_{0JA} for TO-205 (see 1.3), R_{0JC} for U3 (see 1.3).
C6		Not applicable.

4.4.4 Group D inspection. Conformance inspection for hardness assured JANS and JANTXV types shall include the group D tests specified in [table II](#) herein. These tests shall be performed as required in accordance with [MIL-PRF-19500](#) and method 1019 of [MIL-STD-750](#), for total ionizing dose or method 1017 of [MIL-STD-750](#) for neutron fluence as applicable (see [6.2](#) herein), except group D, subgroup 2 may be performed separate from other subgroups. Alternate package options may also be substituted for the testing provided there is no adverse effect to the fluence profile.

4.4.5 Group E inspection. Group E inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-IX of [MIL-PRF-19500](#) and as specified in [table IV](#) herein. Electrical measurements (end-points) shall be in accordance with [table I](#), subgroup 2. Delta measurements shall be in accordance with [table III](#) herein.

4.5 Methods of inspection and test. Methods of inspection and test shall be as specified in the appropriate tables and as follows.

4.5.1 Pulse measurements. Conditions for pulse measurements shall be as specified in section 4 of [MIL-STD-750](#).

MIL-PRF-19500/545L
w/AMENDMENT 2

4.5.2 Thermal resistance. Thermal resistance measurements shall be conducted in accordance with method 3131 of [MIL-STD-750](#). The following details shall apply:

- a. Collector current magnitude during power application shall be -500 mA minimum dc.
- b. Collector to emitter voltage magnitude shall be -10 V dc.
- c. Reference temperature measuring point shall be the case.
- d. Reference temperature measuring point shall be within the range $+25^{\circ}\text{C} \leq T_R \leq +35^{\circ}\text{C}$. The chosen reference temperature shall be recorded before the test is started.
- e. Mounting arrangement shall be with heat sink to case.
- f. See 1.3 for maximum limit of $R_{\theta\text{JC}}$.

4.5.3 Displacement damage characterization. For RHA devices, each supplier shall perform a displacement damage characterization. The characterization shall demonstrate exposure versus data and does not indicate pass or fail criteria. The exposure shall be conducted in accordance with method 1017 of [MIL-STD-750](#). The following details shall apply:

- a. Samples may be taken from any wafer of the qualification lot.
- b. As a minimum, testing shall be at $2\text{E}+12 \text{ n/cm}^2$ plus two additional fluence levels chosen by the manufacturer.
- c. If the device degrades less than 5 percent of the specification at the highest fluence level, a single data point may be sufficient.

Alternate package options may be substituted for characterization. The displacement damage characterization data shall be made available from the manufacturer.

MIL-PRF-19500/545L
w/AMENDMENT 2

TABLE I. Group A inspection.

Inspection 1/	MIL-STD-750		Symbol	Limits	Limits	Unit
	Method	Conditions		Min	Max	
<u>Subgroup 1 2/</u>						
Visual and mechanical examination 3/	2071					
Solderability 3/ 4/	2026					
Resistance to solvents 3/ 4/ 5/	1022					
Salt atmosphere (corrosion)(For laser marked devices only) 4/	1041	n = 6 devices, c = 0				
Temp cycling 3/ 4/	1051	Test condition C, 25 cycles				
Hermetic seal 4/ 6/ Fine leak Gross leak	1071					
Electrical measurements 4/		Group A, subgroup 2				
Bond strength 3/ 4/	2037	Precondition: T _A = +250°C at t = 24 hrs. or T _A = +300°C at t = 2 hrs.				
De-cap internal visual	2075	n = 4, c = 0				
<u>Subgroup 2</u>						
Thermal impedance 7/	3131	See 4.3.3	Z _{0JX}			°C/W
Breakdown voltage, collector to emitter	3011	Bias condition D, I _c = -100 mA dc; I _B = 0, pulsed (see 4.5.1)	V _{(BR)CEO}	-80		V dc
Collector to emitter cutoff current	3041	Bias condition C, V _{CE} = -60 V dc; V _{BE} = 0	I _{CES1}		-1.0	μA dc
Collector to emitter cutoff current	3041	Bias condition C, V _{CE} = -100 V dc; V _{BE} = 0	I _{CES2}		-1.0	mA dc
Collector to emitter cutoff current	3041	Bias condition D, V _{CE} = -40 V dc; I _B = 0	I _{CEO}		-50	μA dc
Emitter to base cutoff current	3061	Bias condition D, V _{EB} = -4 V dc; I _c = 0	I _{EBO1}		-1.0	μA dc
Emitter to base cutoff current	3061	Bias condition D, V _{EB} = -5.5 V dc; I _c = 0	I _{EBO2}		-1.0	mA dc

See footnotes at end of table.

MIL-PRF-19500/545L
w/AMENDMENT 2

TABLE I. Group A inspection - Continued.

Inspection 1/	MIL-STD-750		Symbol	Limits	Limits	Unit
	Method	Conditions		Min	Max	
<u>Subgroup 2 - Continued</u>						
Forward current transfer ratio	3076	$V_{CE} = -5 \text{ V dc}$; $I_C = -50 \text{ mA dc}$, pulsed (see 4.5.1)	h_{FE1}			
2N5151, L, and U3 2N5153, L, and U3				20	50	
Forward current transfer ratio	3076	$V_{CE} = -5 \text{ V dc}$; $I_C = -2.5 \text{ A dc}$, pulsed (see 4.5.1)	h_{FE2}			
2N5151, L, and U3 2N5153, L, and U3				30	70	90 200
Forward current transfer ratio	3076	$V_{CE} = -5 \text{ V dc}$; $I_C = -5 \text{ A dc}$, pulsed (see 4.5.1)	h_{FE3}			
2N5151, L, and U3 2N5153, L, and U3				20	40	
Base-emitter voltage (non-saturated)	3066	Test condition B, $V_{CE} = -5 \text{ V dc}$; $I_C = -2.5 \text{ A dc}$, pulsed (see 4.5.1)	V_{BE}		-1.45	V dc
Base-emitter saturation voltage	3066	Test condition A, $I_C = -2.5 \text{ A dc}$; $I_B = -250 \text{ mA dc}$, pulsed (see 4.5.1)	$V_{BE(sat)1}$		-1.45	V dc
Base-emitter saturation voltage	3066	Test condition A, $I_C = -5 \text{ A dc}$; $I_B = -500 \text{ mA dc}$, pulsed (see 4.5.1)	$V_{BE(sat)2}$		-2.2	V dc
Collector-emitter saturation voltage	3071	$I_C = -2.5 \text{ A dc}$; $I_B = -250 \text{ mA dc}$, pulsed (see 4.5.1)	$V_{CE(sat)1}$		-0.75	V dc
Collector-emitter saturation voltage	3071	$I_C = -5 \text{ A dc}$; $I_B = -500 \text{ mA dc}$, pulsed (see 4.5.1)	$V_{CE(sat)2}$		-1.5	V dc
<u>Subgroup 3</u>						
High temperature operation:		$T_C = +150^\circ\text{C}$				
Collector to emitter cutoff current	3041	Bias condition A, $V_{CE} = -60 \text{ V dc}$; $V_{BE} = +2 \text{ V dc}$	I_{CEX}		-25	$\mu\text{A dc}$

See footnotes at end of table.

MIL-PRF-19500/545L
w/AMENDMENT 2

TABLE I. Group A inspection - Continued.

Inspection 1/	MIL-STD-750		Symbol	Limits	Limits	Unit
	Method	Conditions		Min	Max	
<u>Subgroup 3</u> - continued						
Low temperature operation		$T_C = -55^\circ\text{C}$				
Forward - current transfer ratio	3076	$V_{CE} = -5 \text{ V dc}$; $I_C = -2.5 \text{ A dc}$; pulsed (see 4.5.1)	h_{FE4}			
2N5151, L, and U3 2N5153, L, and U3				15	25	
<u>Subgroup 4</u>						
Common-emitter, small-signal, short-circuit, forward-current transfer ratio	3206	$V_{CE} = -5 \text{ V dc}$; $I_C = -100 \text{ mA dc}$; $f = 1 \text{ KHz}$	h_{fe}			
2N5151, L, and U3 2N5153, L, and U3				20	50	
Magnitude of common-emitter, small-signal short-circuit, forward-current, transfer ratio	3306	$V_{CE} = -5 \text{ V dc}$; $I_C = -500 \text{ mA dc}$, $f = 10 \text{ MHz}$	$ h_{fe} $			
2N5151, L, and U3 2N5153, L, and U3				6	7	
Open-circuit output capacitance	3236	$V_{CB} = -10 \text{ V dc}$; $I_E = 0$, $f = 1 \text{ MHz}$	C_{obo}		250	pF
Switching time		$I_C = -5 \text{ A dc}$; $I_{B1} = -500 \text{ mA dc}$ $I_{B2} = -500 \text{ mA dc}$ $V_{BE(off)} = -3.7 \text{ V dc}$ $R_L = 6 \Omega$, (see figure 14)	t_{on} t_s t_f t_{off}	0.5 1.4 0.5 1.5	μs μs μs μs	

See footnotes at end of table.

TABLE I. Group A inspection - Continued.

Inspection 1/	MIL-STD-750		Symbol	Limits	Limits	Unit
	Method	Conditions		Min	Max	
<u>Subgroup 5</u>						
Safe operating area (dc)	3051	Pre-pulse condition for each test: $T_C = +25^\circ\text{C}$, (see figure 15) Pulse condition for each test: $t_p = 1 \text{ sec}$. 1 cycle $T_C = +25^\circ\text{C}$ $V_{CE} = -5.0 \text{ V dc}$, $I_C = -2 \text{ A dc}$ for TO-205 $V_{CE} = -5.8 \text{ V dc}$, $I_C = -2 \text{ A dc}$ for U3				
Test # 1		$V_{CE} = -32 \text{ V dc}$, $I_C = -310 \text{ mA dc}$ for TO-205 $V_{CE} = -32 \text{ V dc}$, $I_C = -360 \text{ mA dc}$ for U3				
Test # 2		$V_{CE} = -80 \text{ V dc}$, $I_C = -12.5 \text{ mA dc}$ for TO-205 $V_{CE} = -80 \text{ V dc}$, $I_C = -14.5 \text{ mA dc}$ for U3				
Test # 3						
Safe operating area (unclamped inductive)	3053	Condition C $T_C = +25^\circ\text{C}$; $R_{BB1} = 10 \Omega$; $R_{BB2} = 100 \Omega$; $L = 0.3 \text{ mH}$; $RL = 0.1 \Omega$; $V_{CC} = -10 \text{ V dc}$; $V_{BB1} = -10 \text{ V dc}$; $V_{BB2} = 4 \text{ V dc}$; $I_C = -10 \text{ A dc}$ (see figure 13)				
End point electrical measurements		See table I , subgroup 2				
<u>Subgroups 6 and 7</u>						
Not applicable						

- 1/ For sampling plan see [MIL-PRF-19500](#).
- 2/ For resubmission of failed subgroup 1, double the sample size of the failed test or sequence of tests. A failure in [table I](#), subgroup 1 shall not require retest of the entire subgroup. Only the failed test shall be rerun upon submission.
- 3/ Separate samples may be used.
- 4/ Not required for JANS devices.
- 5/ Not required for laser marked devices.
- 6/ Hermetic seal test is an end-point to temperature cycling in addition to electrical measurements.
- 7/ For end-point measurements, this test is required for the following subgroups:
Group B, steps 2 and 3 (JAN, JANTX, and JANTXV).
Group B, subgroups 3 and 4 (JANS).
Group C, subgroup 2 and 6.
Group E, subgroup 1.

TABLE II. Group D inspection.

Inspection 1/ 2/ 3/	MIL-STD-750		Symbol	Limits	Limits	Unit
	Method	Conditions		Min	Max	
<u>Subgroup 1 4/</u>						
Neutron irradiation	1017	Neutron exposure $V_{CES} = 0V$				
Breakdown voltage, collector to emitter	3011	Bias condition D, $I_c = -100 \text{ mA dc}$; $I_B = 0$, pulsed (see 4.5.1)	$V_{(BR)CEO}$	-80		V dc
Collector to emitter cutoff current	3041	Bias condition C, $V_{CE} = -60 \text{ V dc}$; $V_{BE} = 0$	I_{CES1}		-2.0	$\mu\text{A dc}$
Collector to emitter cutoff current	3041	Bias condition C, $V_{CE} = -100 \text{ V dc}$; $V_{BE} = 0$	I_{CES2}		-2.0	mA dc
Collector to emitter cutoff current	3041	Bias condition D, $V_{CE} = -40 \text{ V dc}$; $I_B = 0$	I_{CEO}		-100	$\mu\text{A dc}$
Emitter to base cutoff current	3061	Bias condition D, $V_{EB} = -4 \text{ V dc}$; $I_c = 0$	I_{EBO1}		-2.0	$\mu\text{A dc}$
Emitter to base cutoff current	3061	Bias condition D, $V_{EB} = -5.5 \text{ V dc}$; $I_c = 0$	I_{EBO2}		-2.0	mA dc
Forward-current transfer ratio 2N5151 2N5153	3076	$V_{CE} = -5 \text{ V dc}$; $I_c = -50 \text{ mA dc}$	$[h_{FE1}]$ 5/ [10] [25]			
Forward-current transfer ratio 2N5151 2N5153	3076	$V_{CE} = -5 \text{ V dc}$; $I_c = -2.5 \text{ A dc}$, pulsed	$[h_{FE2}]$ 5/ [15] [35]		90 200	
Forward-current transfer ratio 2N5151 2N5153	3076	$V_{CE} = -5 \text{ V dc}$; $I_c = -5 \text{ A dc}$, pulsed	$[h_{FE3}]$ 5/ [10] [20]			
Base-emitter voltage (non-saturated)	3066	Test condition B, $V_{CE} = -5 \text{ V dc}$; $I_c = -2.5 \text{ A dc}$, pulsed (see 4.5.1)	V_{BE}		-1.67	V dc
Base-emitter saturation voltage	3066	Test condition A, $I_c = -2.5 \text{ A dc}$; $I_B = -250 \text{ mA dc}$, pulsed (see 4.5.1)	$V_{BE(sat)1}$		-1.67	V dc
Base-emitter saturation voltage	3066	Test condition A, $I_c = -5 \text{ A dc}$; $I_B = -500 \text{ mA dc}$, pulsed (see 4.5.1)	$V_{BE(sat)2}$		-2.53	V dc

See footnotes at end of table.

TABLE II. Group D inspection. Continued.

Inspection 1/ 2/ 3/	MIL-STD-750		Symbol	Limits	Limits	Unit
	Method	Conditions		Min	Max	
<u>Subgroup 1 - Continued 4/</u>						
Collector-emitter saturation voltage	3071	$I_C = -2.5 \text{ A dc}$; $I_B = -250 \text{ mA dc}$; pulsed	$V_{CE(sat)1}$		-0.86	V dc
Collector-emitter saturation voltage	3071	$I_C = -5 \text{ A dc}$; $I_B = -500 \text{ mA dc}$; pulsed	$V_{CE(sat)2}$		-1.73	V dc
<u>Subgroup 2.</u>						
* Total dose irradiation	1019	Gamma exposure, $V_{CES} = -64 \text{ V}$, Condition A, for high dose rate. or Condition D, for low dose rate.				
Breakdown voltage, collector to emitter	3011	Bias condition D, $I_C = -100 \text{ mA dc}$; $I_B = 0$, pulsed (see 4.5.1)	$V_{(BR)CEO}$	-80		V dc
Collector to emitter cutoff current	3041	Bias condition C, $V_{CE} = -60 \text{ V dc}$; $V_{BE} = 0$	I_{CES1}		-2.0	$\mu\text{A dc}$
Collector to emitter cutoff current	3041	Bias condition C, $V_{CE} = -100 \text{ V dc}$; $V_{BE} = 0$	I_{CES2}		-2.0	mA dc
Collector to emitter cutoff current	3041	Bias condition D, $V_{CE} = -40 \text{ V dc}$; $I_B = 0$	I_{CEO}		-100	$\mu\text{A dc}$
Emitter to base cutoff current	3061	Bias condition D, $V_{EB} = -4 \text{ V dc}$; $I_C = 0$	I_{EBO1}		-2.0	$\mu\text{A dc}$
Emitter to base cutoff current	3061	Bias condition D, $V_{EB} = -5.5 \text{ V dc}$; $I_C = 0$	I_{EBO2}		-2.0	mA dc
Forward-current transfer ratio 2N5151 2N5153	3076	$V_{CE} = -5 \text{ V dc}$; $I_C = -50 \text{ mA dc}$	$[h_{FE1}]$ 5/ [10] [25]			
Forward-current transfer ratio 2N5151 2N5153	3076	$V_{CE} = -5 \text{ V dc}$; $I_C = -2.5 \text{ A dc}$	$[h_{FE2}]$ 5/ [15] [35]		90 200	
Forward-current transfer ratio 2N5151 2N5153	3076	$V_{CE} = -5 \text{ V dc}$; $I_C = -5 \text{ A dc}$. pulsed	$[h_{FE3}]$ 5/ [10] [20]			

MIL-PRF-19500/545L
w/AMENDMENT 2

TABLE II. Group D inspection - Continued.

Inspection <u>1/</u> <u>2/</u> <u>3/</u>	MIL-STD-750		Symbol	Limits	Limits	Unit
	Method	Conditions		Min	Max	
<u>Subgroup 2 - Continued.</u>						
Base-emitter voltage (non-saturated)	3066	Test condition B, $V_{CE} = -5$ V dc; $I_C = -2.5$ A dc, pulsed (see 4.5.1)	V_{BE}		-1.67	V dc
Base-emitter saturation voltage	3066	Test condition A, $I_C = -2.5$ A dc; $I_B = -250$ mA dc, pulsed (see 4.5.1)	$V_{BE(sat)1}$		-1.67	V dc
Base-emitter saturation voltage	3066	Test condition A, $I_C = -5$ A dc; $I_B = -500$ mA dc; pulsed (see 4.5.1)	$V_{BE(sat)2}$		-2.53	V dc
Collector-emitter saturation voltage	3071	$I_C = -2.5$ A dc; $I_B = -250$ mA dc	$V_{CE(sat)1}$		-0.86	V dc
Collector-emitter saturation voltage	3071	$I_C = -5$ A dc; $I_B = -500$ mA dc	$V_{CE(sat)2}$		-1.73	V dc

1/ Tests to be performed on all devices receiving radiation exposure.

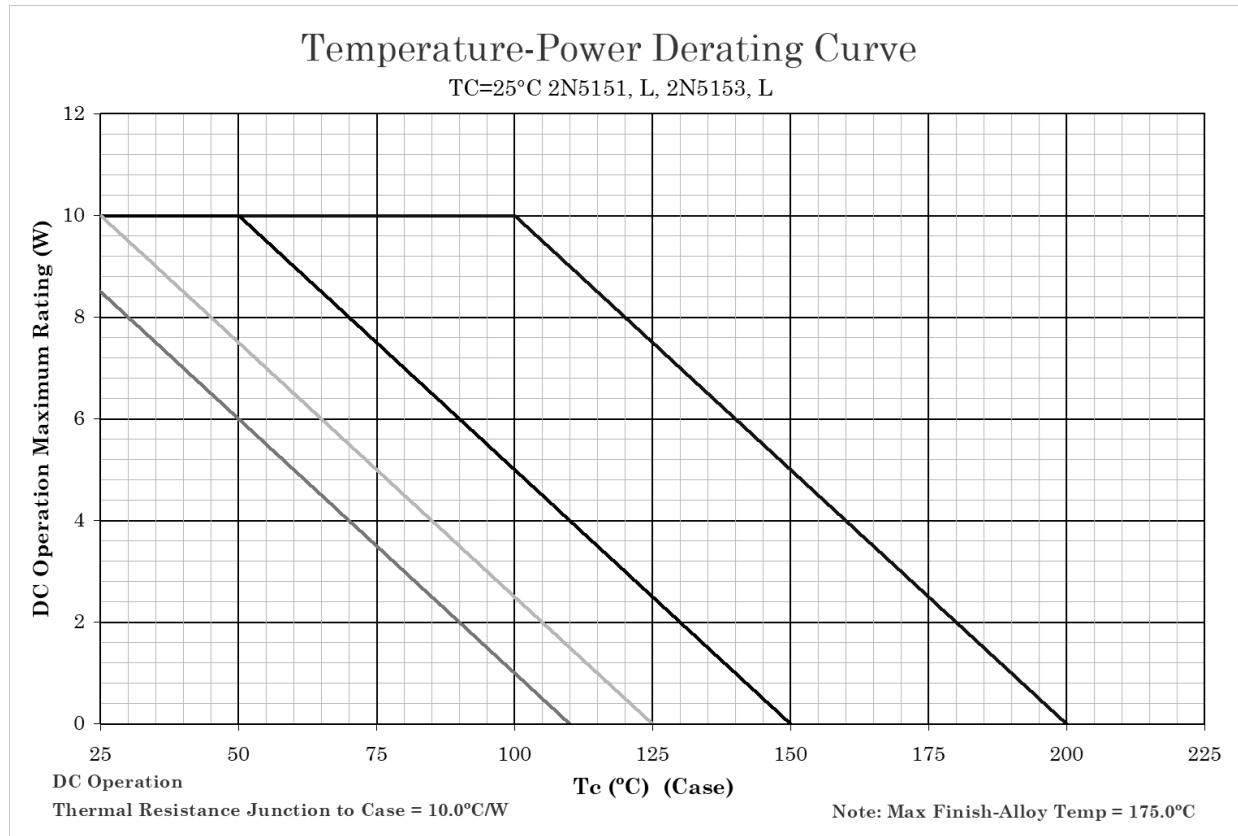
2/ For sampling plan, see [MIL-PRF-19500](#).

3/ Electrical characteristics apply to all device types unless otherwise noted.

4/ Subgroup 1 is an optional test and shall be specified on the contract when required.

5/ See method 1019 of [MIL-STD-750](#) for how to determine $[h_{FE}]$ by first calculating the delta ($1/h_{FE}$) from the pre- and post-radiation h_{FE} . Notice that $[h_{FE}]$ is not the same as h_{FE} and cannot be measured directly. The $[h_{FE}]$ value can never exceed the pre-radiation minimum h_{FE} that it is based upon.

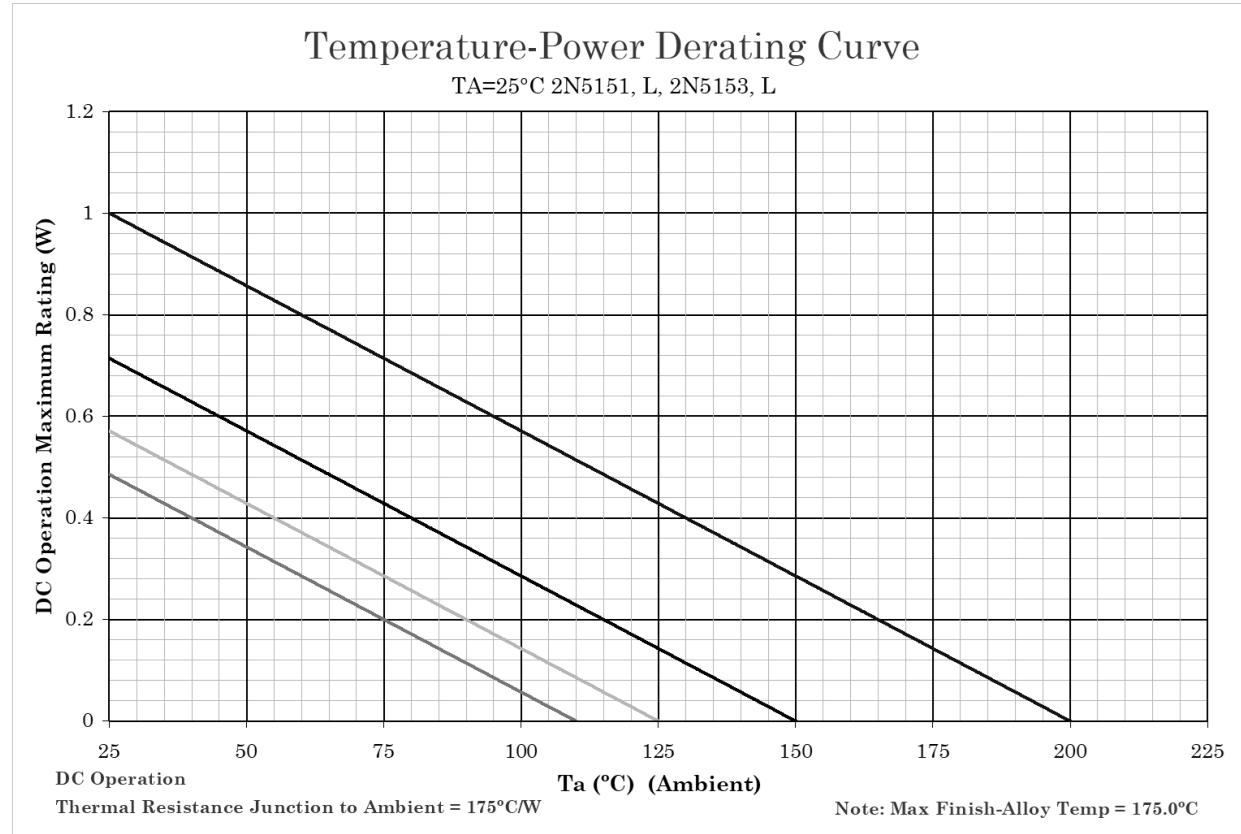
MIL-PRF-19500/545L
w/AMENDMENT 2


TABLE III. Groups B, C, and E delta and electrical measurements. 1/ 2/ 3/ 4/

Steps	Inspection	MIL-STD-750		Symbol	Limits	Limits	Unit
		Method	Conditions		Min	Max	
1.	Forward - current transfer ratio	3076	$I_C = -2.5 \text{ A dc}$; $V_{CE} = -5 \text{ V dc}$, pulsed (see 4.5.1).	Δh_{FE2}	± 20 percent change from initial reading.		

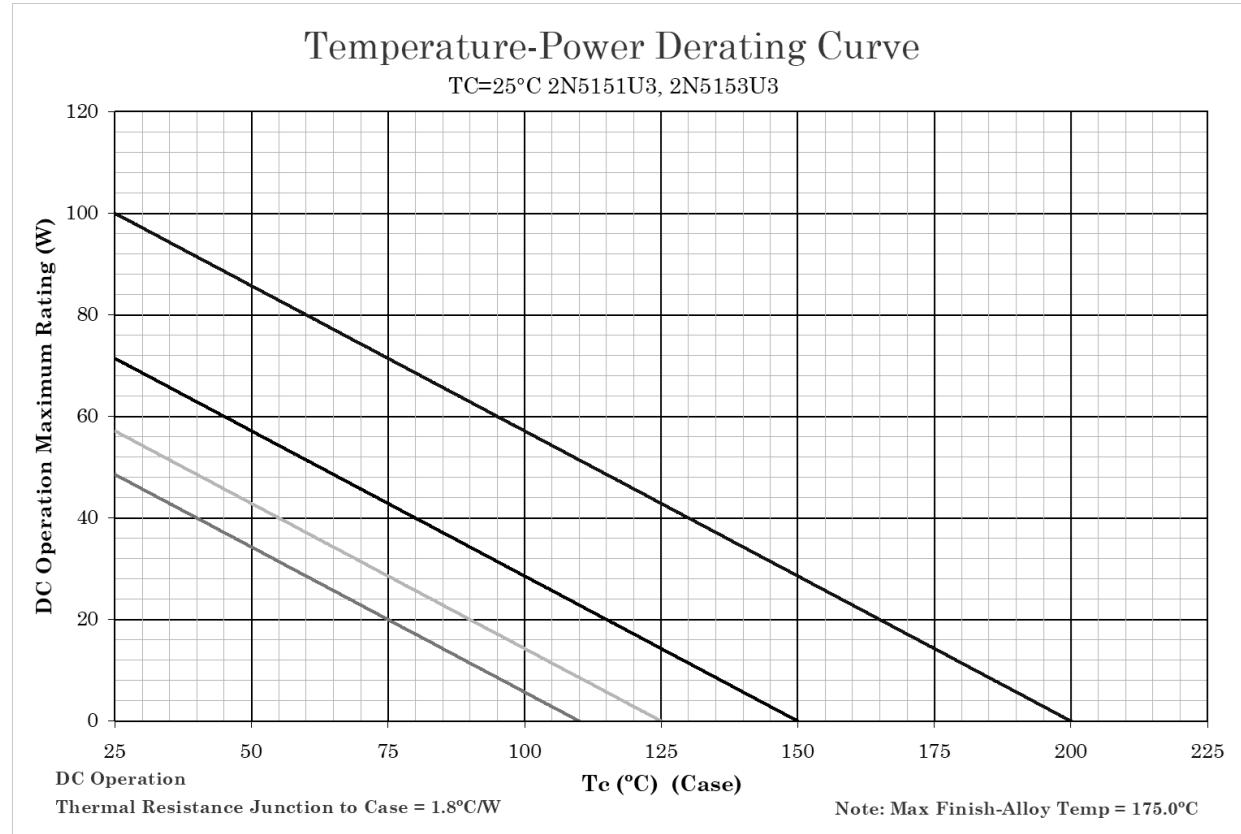
- 1/ The delta measurements for table E-VIA (JANS) of **MIL-PRF-19500** are as follows: Subgroups 4 and 5, see table III herein, step 1.
- 2/ The delta measurements for **4.4.2.2** (JAN, JANTX and JANTXV) for all steps; see **table III** herein, step 1.
- 3/ The delta measurements for table E-VII of **MIL-PRF-19500** are as follows: Subgroup 6, see **table III** herein, step 1.
- 4/ The delta measurements for table E-IX of **MIL-PRF-19500** and **table III** herein are as follows: Subgroups 1 and 2, see **table III** herein, step 1.

TABLE IV. Group E inspection (all quality levels) – for qualification or re-qualification only.


Inspection	MIL-STD-750		Qualification
	Method	Conditions	
<u>Subgroup 1</u>			
Temperature cycling (air to air)	1051	Test condition C, 500 cycles	45 devices c = 0
Hermetic seal Fine leak Gross leak	1071		
Electrical measurements		See table I , subgroup 2 and table III herein	
<u>Subgroup 2</u>			
Intermittent life	1037	$V_{CB} = -10$ V dc, 6,000 cycles. Adjust device current, or power, to achieve a minimum ΔT_J of +100°C	45 devices c = 0
Electrical measurements		See table I , subgroup 2 and table III herein	
<u>Subgroup 4</u>			
Thermal impedance curves		See table E-IX of MIL-PRF-19500, group E, subgroup 4.	
<u>Subgroup 5</u>			
Not applicable			
<u>Subgroup 8</u>			
Reverse stability	1033	Condition B	45 devices c = 0
<u>Subgroup 12</u>			
Neutron Irradiation	1017	See 4.5.3	

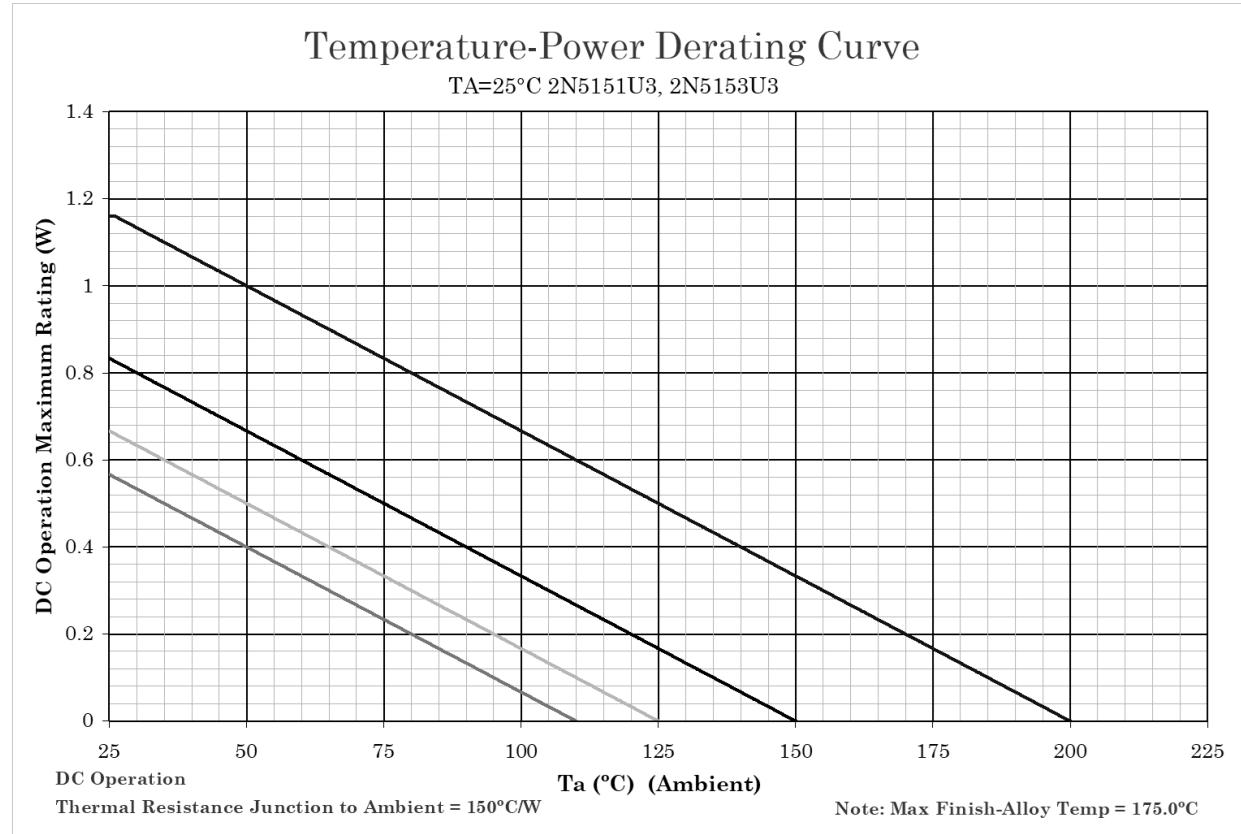
NOTES:

1. This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at $\leq T_J$ specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_J allowed.
2. Derate design curve constrained by the maximum junction temperature ($T_J \leq +200^\circ\text{C}$) and power rating specified. (See [1.3](#) herein.)
3. Derate design curve chosen at $T_J \leq +150^\circ\text{C}$, where the maximum temperature of electrical test is performed.
4. Derate design curves chosen at $T_J \leq +125^\circ\text{C}$, and $+110^\circ\text{C}$ to show power rating where most users want to limit T_J in their application.


FIGURE 6. Temperature-power derating graph, TO-205, case temperature.

NOTES:

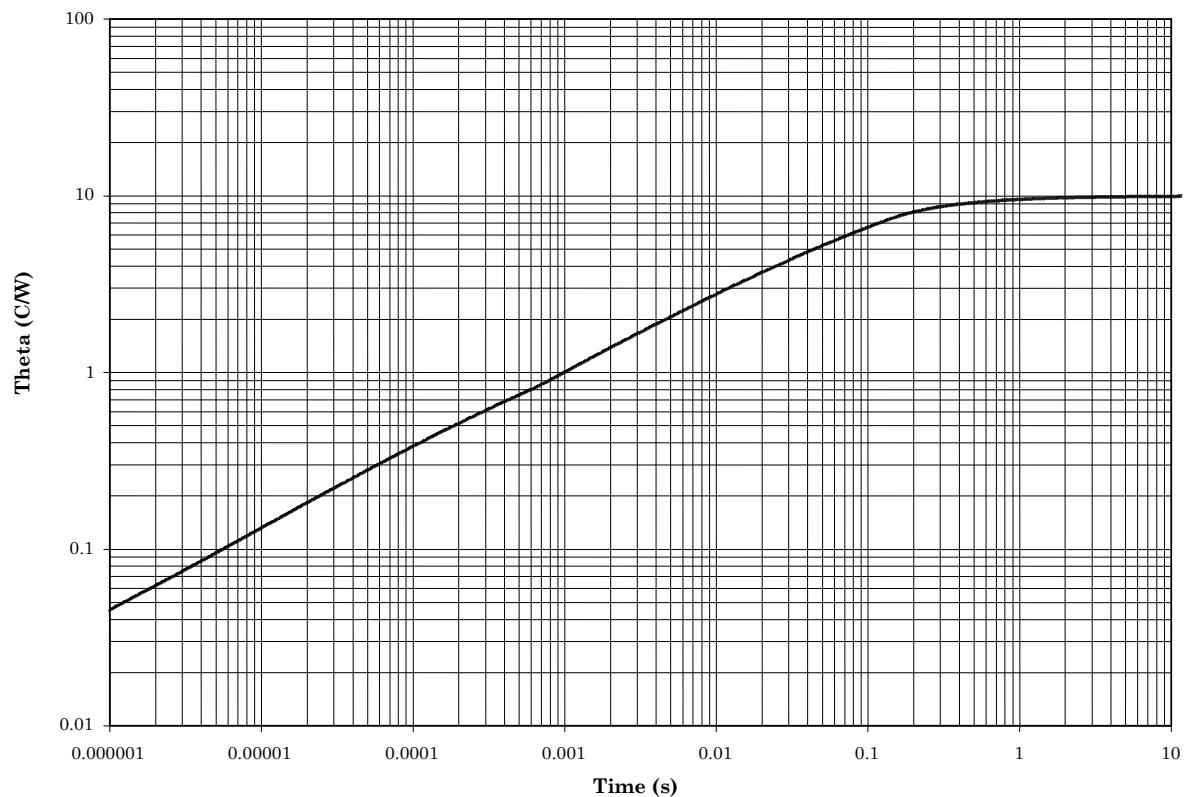
1. This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at $\leq T_J$ specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_J allowed.
2. Derate design curve constrained by the maximum junction temperature ($T_J \leq +200^\circ\text{C}$) and power rating specified. (See 1.3 herein.)
3. Derate design curve chosen at $T_J \leq +150^\circ\text{C}$, where the maximum temperature of electrical test is performed.
4. Derate design curves chosen at $T_J \leq +125^\circ\text{C}$, and $+110^\circ\text{C}$ to show power rating where most users want to limit T_J in their application.


FIGURE 7. Temperature-power derating graphs, TO-205 ambient temperature.

NOTES:

1. This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at $\leq T_J$ specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_J allowed.
2. Derate design curve constrained by the maximum junction temperature ($T_J \leq +200^\circ\text{C}$) and power rating specified. (See 1.3 herein.)
3. Derate design curve chosen at $T_J \leq +150^\circ\text{C}$, where the maximum temperature of electrical test is performed.
4. Derate design curves chosen at $T_J \leq +125^\circ\text{C}$, and $+110^\circ\text{C}$ to show power rating where most users want to limit T_J in their application.

FIGURE 8. Temperature-power derating graph, U3 package, case temperature.



NOTES:

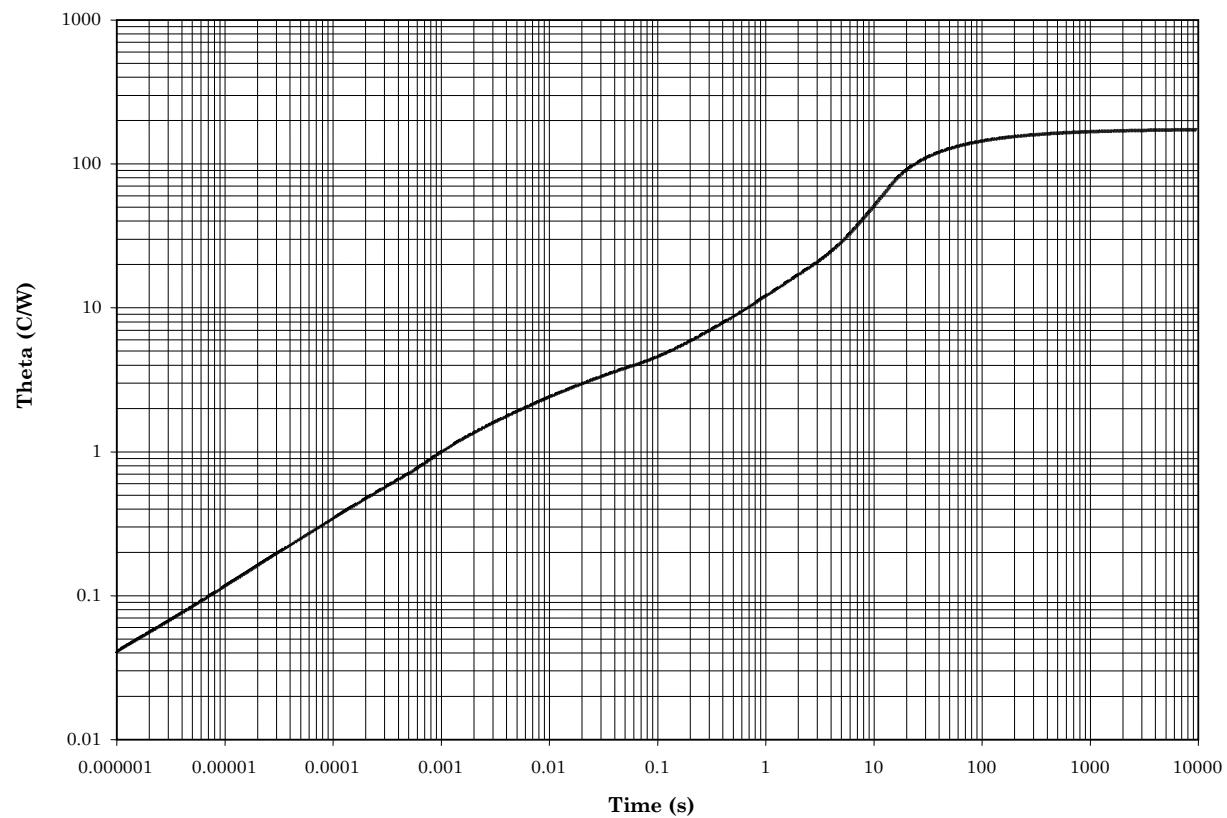
1. This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at $\leq T_J$ specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_J allowed.
2. Derate design curve constrained by the maximum junction temperature ($T_J \leq +200^\circ\text{C}$) and power rating specified. (See 1.3 herein.)
3. Derate design curve chosen at $T_J \leq +150^\circ\text{C}$, where the maximum temperature of electrical test is performed.
4. Derate design curves chosen at $T_J \leq +125^\circ\text{C}$, and $+110^\circ\text{C}$ to show power rating where most users want to limit T_J in their application.

FIGURE 9. Temperature-power derating graph, U3 package, ambient temperature.

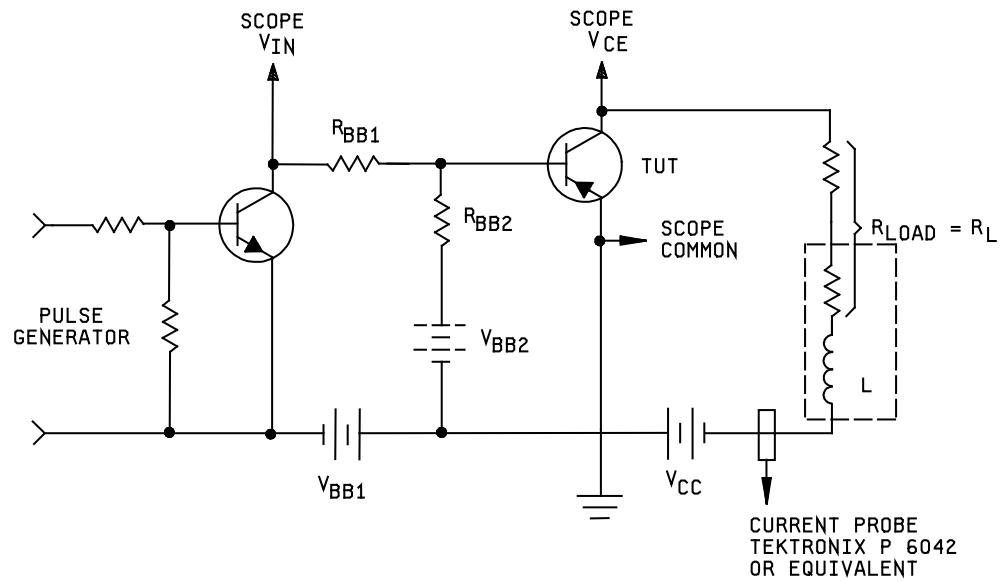
Maximum Thermal Impedance

2N5151, 2N5151L, 2N5153, and 2N5153L at $T_c = +25^\circ\text{C}$, $R_{\theta\text{JC}} = 10^\circ\text{C/W}$.

FIGURE 10. Thermal impedance graph, TO-205 package at case temperature.


Maximum Thermal Impedance

2N5151U3 and 2N5153U3 at $T_C = +25^\circ\text{C}$, $R_{\theta\text{JC}} = 1.75^\circ\text{C/W}$.


FIGURE 11. Thermal impedance graph, U3 package at case temperature.

Maximum Thermal Impedance

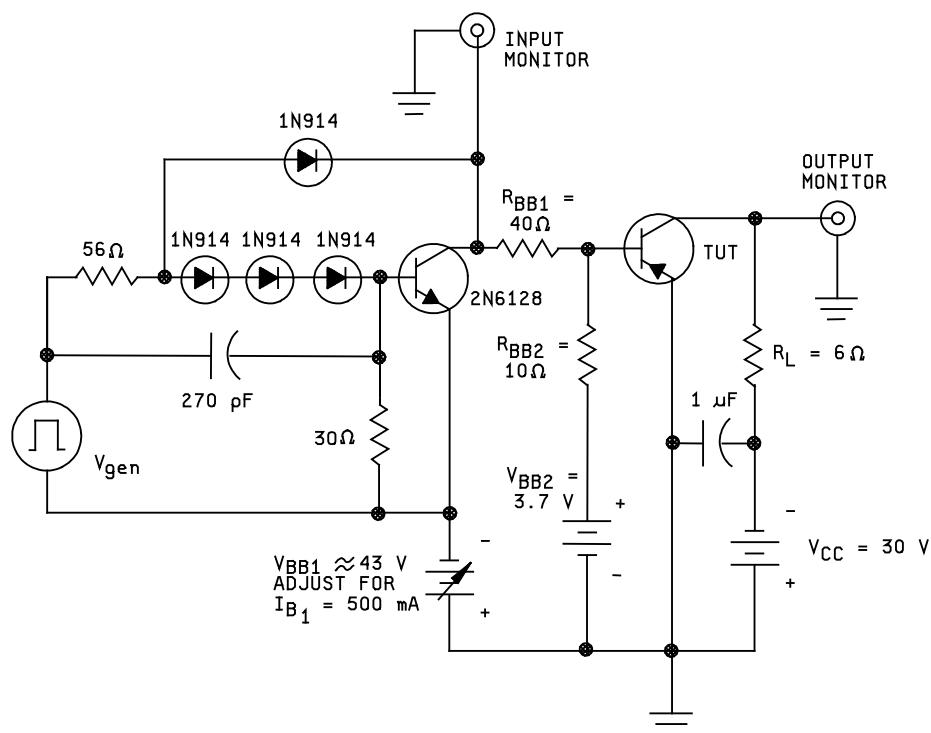
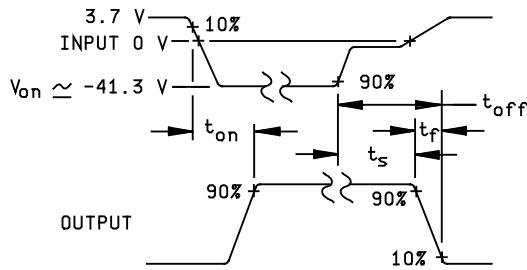


2N5151, 2N5151L, 2N5153, and 2N5153L at $T_A = +25^\circ\text{C}$, $R_{\theta JA} = 175^\circ\text{C}/\text{W}$.

FIGURE 12. Thermal impedance graph, TO-205 package at ambient temperature.

$R_{BB1} = 10 \Omega$
 $R_{BB2} = 100 \Omega$
 $L = 0.3 \text{ mH}$
 $R_L = 0.1 \Omega$
 $V_{CC} = -10 \text{ V dc}$
 $I_C = -10 \text{ A}$
 $V_{BB1} = -10 \text{ V dc}$
 $V_{BB2} = 4 \text{ V dc}$

FIGURE 13. Unclamped inductive load energy test circuit.

NOTES:

1. V_{gen} is -30 pulse (from 0 V) into a 50 ohm termination.
2. The V_{gen} waveform is supplied by a generator with the following characteristics: $t_r \leq 15$ ns, $t_f = 15$ ns, $Z_{out} = 50$ ohm, duty cycle ≤ 2 percent.
3. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leq 15$ ns, $R_{in} \geq 10$ M Ω , $C_{in} \leq 11.5$ pF.
4. Resistors shall be noninductive types.
5. The dc power supplies may require additional bypassing in order to minimize ringing.
6. An equivalent circuit may be used.

FIGURE 14. Switching time test circuit.



FIGURE 15. Maximum safe operating area.

5. PACKAGING

5.1 Packaging. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activities within the Military Service or Defense Agency, or within the Military Service's system commands. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

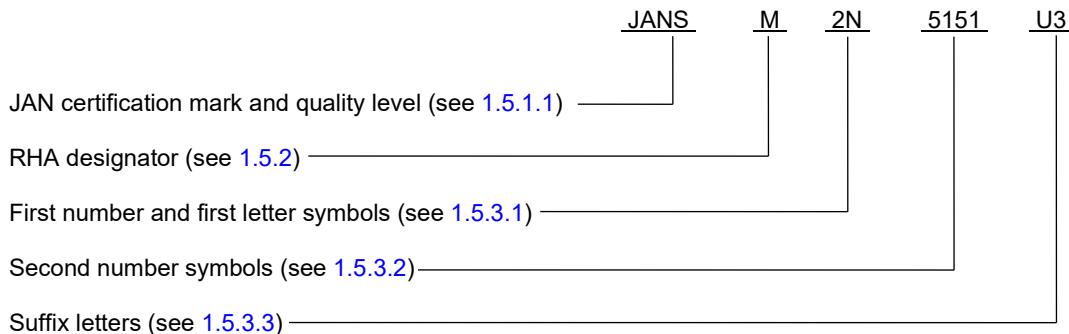
6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory. The notes specified in [MIL-PRF-19500](#) are applicable to this specification.)

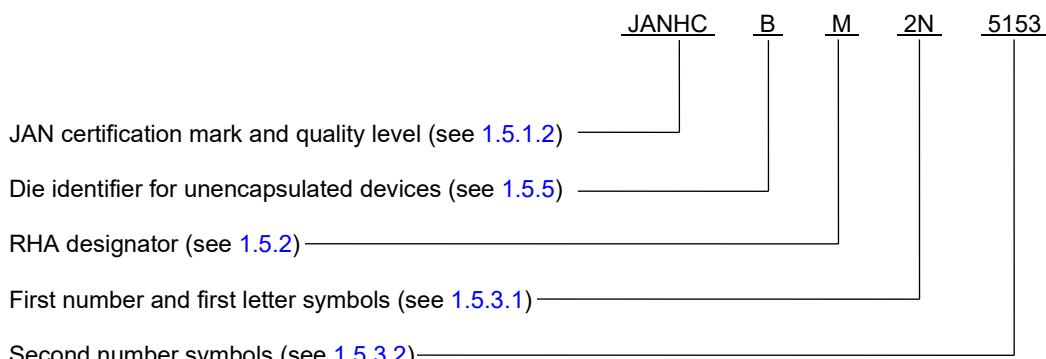
6.1 Intended use. Semiconductors conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

6.2 Acquisition requirements. Acquisition documents should specify the following:

- a. Title, number, and date of this specification.
- b. Packaging requirements (see 5.1).
- c. Lead finish (see 3.4.2).
- d. The complete PIN, see 1.5 and 6.5.
- e. For acquisition of RHA designed devices, [table II](#) herein, subgroup 1 testing of group D is optional. If subgroup 1 testing is desired, it will be specified in the contract.


6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List ([QML 19500](#)) whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DLA Land and Maritime, ATTN: VQE, P.O. Box 3990, Columbus, OH 43218-3990 or e-mail vqe.chief@dla.mil. An online listing of products qualified to this specification may be found in the Qualified Products Database (QPD) at <https://assist.dla.mil>.

6.4. Suppliers and PINs of JANHC and JANKC die. The qualified JANHC and JANKC suppliers with the applicable letter version (example JANHCB2N5151) will be identified on the QML.


JANHC and JANKC ordering information				
PIN	Manufacturer			
	34156	43611	52GC4	
2N5151	JANHCB2N5151	JANHCC2N5151	JANHCD2N5151	
2N5153	JANHCB2N5153	JANHCC2N5153	JANHCD2N5153	
2N5151	JANKCB2N5151	JANKCC2N5151	JANKCD2N5151	
2N5153	JANKCB2N5153	JANKCC2N5153	JANKCD2N5153	

6.5 PIN construction example.

6.5.1 Encapsulated devices The PINs for encapsulated devices are constructed using the following form.

6.5.2 Unencapsulated devices. The PINs for un-encapsulated devices are constructed using the following form.

6.6 List of PINs.

6.6.1 PINs for encapsulated devices. The following is a list of possible PINs for encapsulated devices available on this specification sheet.

PINs for type 2N5151 and 2N5153.			
JAN2N5151	JANTX2N5151	JANTXV#2N5151	JANS#2N5151
JAN2N5151L	JANTX2N5151L	JANTXV#2N5151L	JANS#2N5151L
JAN2N5153	JANTX2N5153	JANTXV#2N5153	JANS#2N5153
JAN2N5153L	JANTX2N5153L	JANTXV#2N5153L	JANS#2N5153L
JAN2N5151U3	JANTX2N5151U3	JANTXV#2N5151U3	JANS#2N5151U3
JAN2N5153U3	JANTX2N5153U3	JANTXV#2N5153U3	JANS#2N5153U3

* (1) The number sign (#) represents one of eleven RHA designators available (E, K, U, M, D, P, L, R, F, G, or H). The PIN is also available without a RHA designator.

6.6.2 PINs for unencapsulated devices (die). The following is a list of possible PINs for unencapsulated devices available on this specification sheet.

Quality level HC	Quality level KC
JANHCB#2N5151	JANKCB#2N5151
JANHCB#2N5153	JANKCB#2N5153
JANHCC#2N5151	JANKCC#2N5151
JANHCC#2N5153	JANKCC#2N5153
JANHCD#2N5151	JANKCD#2N5151
JANHCD#2N5153	JANKCD#2N5153

* (1) The number sign (#) represents one of eleven RHA designators available (E, K, U, M, D, P, L, R, F, G, or H). The PIN is also available without a RHA designator.

6.7 Request for new types and configurations. Requests for new device types or configurations for inclusions in this specification sheet should be submitted to: DLA Land and Maritime, ATTN: VAC, Post Office Box 3990, Columbus, OH 43218-3990 or by electronic mail at Semiconductor@dla.mil or by facsimile (614) 693-1642 or DSN 850-6939.

6.8 Amendment notations. The margins of this specification are marked with asterisks to indicate modifications generated by this amendment. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the last previous issue.

Custodians:

Army - CR
Navy - SH
Air Force - 85
NASA - NA
DLA - CC

Preparing activity:

DLA - CC

(Project 5961-2024-030)

Review activities:

Army - MI

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <https://assist.dla.mil>.