

Descriptions

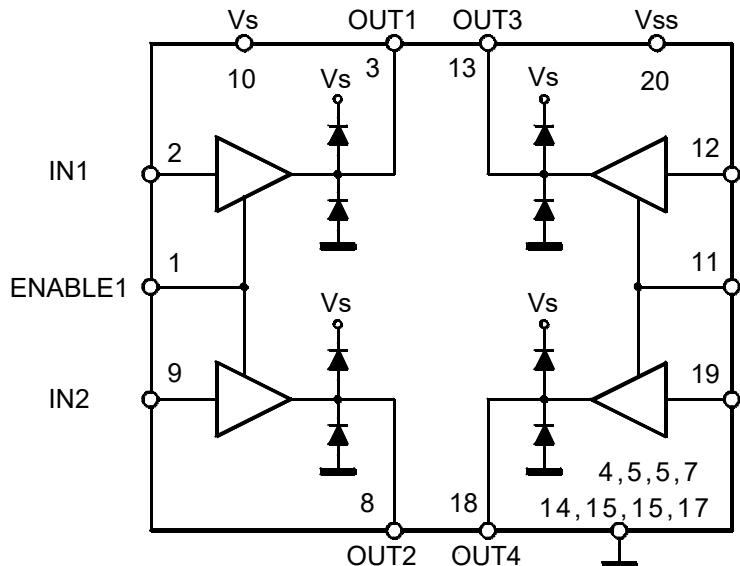
The L293DD is a monolithic integrated high voltage, highcurrent four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relayssolenoides, DC and stepping motors) and switching power transistors. To simplify use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the logic, allowing operation at a lower voltage and internal clamp diodes are included. This device is suitable for use in switching applications at frequencies up to 5 kHz.

The L293DD is assembled in a 16 lead plastic package which has 4 center pins connected together and used for heat sinking. The L293DD is assembled in a 20 lead surface mount which has 8 center pins connected together and used for heat sinking.

Feature

- Enable Facility
- Internal Clamp Diodes
- Overtemperature Protection
- logical "0" Input Voltage Up to 1.5V (high noise immunity)
- 600ma Output Current Capability Per Channel
- 1.2A Peak Output Current (Non-Repetitive) Per Channel

Applications


- Stepper Motor Drivers
- DC Motor Drivers
- Latching Relay Drivers

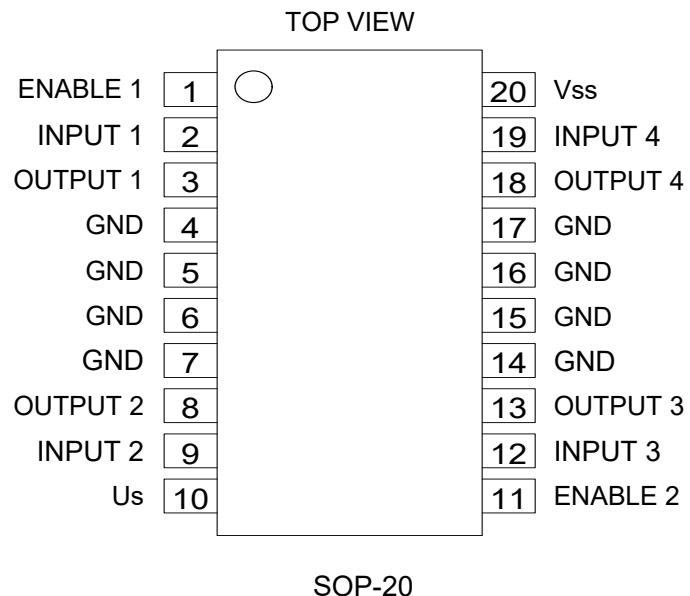
Ordering Information

Product Model	Package Type	Packing	Packing Qty
L293DD	SOP-20(SOIC-20)	Tape	1000Pcs/Reel

Block Diagram

Thermal Data

Symbol	Description	SOP-20(SOIC-20)	Unit
$R_{thj\text{-pins}}$	Thermal Resistance Junction-pins	max.	14
$R_{thj\text{-amb}}$	Thermal Resistance junction-ambient	max.	50(*)
$R_{thj\text{-case}}$	Thermal Resistance Junction-case	max.	-


(*) With 6sq. cm on board heat sink.

Truth Table (one channel)

Input	Enable(*)	Output
H	H	H
L	H	L
H	L	Z
L	L	Z

Pin Connections

Pin Functions

PIN		Type	Description
Name	NO.		
1,2EN	1	I	Enable driver channels 1 and 2 (active high input)
<1:4>A	2, 7, 10, 15	I	Driver inputs, noninverting
<1:4>Y	3, 6, 11, 14	O	Driver outputs
3,4EN	9	I	Enable driver channels 3 and 4 (active high input)
GROUND	4, 5, 12, 13	—	Device ground and heat sink pin. Connect to printed-circuit-board ground plane with multiple solid vias
V _{CC1}	16	—	5-V supply for internal logic translation
V _{CC2}	8	—	Power VCC for drivers 4.5 V to 36 V

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _s	Supply Voltage	36	V
V _{ss}	Logic Supply Voltage	36	V
V _i	Input Voltage	7	V
V _{en}	Enable Voltage	7	V
I _o	Peak Output Current (100 μ s non repetitive)	1.2	A
P _{tot}	Total Power Dissipation at T _{pins} = 90 °C	4	W
T _{stg, T_j}	Storage and Junction Temperature	-40 to 150	°C

Electrical Characteristics

(For each channel, V_s=24V, V_{ss}=5V, Tamb=25°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V _s	Supply Voltage (pin 10)		V _{ss}		36	V
V _{ss}	Logic Supply Voltage (pin 20)		4.5		36	V
I _s	Total Quiescent Supply Current (pin 10)	V _i =L; I _o =0; V _{en} =H		2	6	mA
		V _i =H; I _o =0; V _{en} =H		16	24	mA
		V _{en} = L			4	mA
I _{ss}	Total Quiescent Logic Supply Current (pin 20)	V _i =L; I _o =0; V _{en} =H	44	60	mA	
		V _i =H; I _o =0; V _{en} =H	16	22	mA	
		V _{en} = L	16	24	mA	
V _{IL}	Input Low Voltage (pin 2,9, 12, 19)		-0.3		1.5	V
V _{IH}	Input High Voltage (pin 2, 9, 12, 19)	V _{ss} ≤7 V	2.3		V _{ss}	V
		V _{ss} >7V	2.3		7	V
I _{IL}	Low Voltage Input Current (pin 2,9, 12, 19)	V _{IL} = 1.5V			-10	μA
I _{IH}	High Voltage Input Current (pin 2,9, 12, 19)	2.3V≤V _{IH} ≤V _{ss} -0.6V		30	100	μA
V _{enL}	Enable Low Voltage (pin 1, 11)		-0.3		1.5	V
V _{enH}	Enable High Voltage (pin 1, 11)	V _{ss} ≤7 V	2.3		V _{ss}	V
		V _{ss} >7V	2.3		7	V
I _{enL}	Low Voltage Enable Current (pin 1, 11)	V _{en} L= 1.5V	-30		-100	μA
I _{enH}	High Voltage Enable Current (pin 1, 11)	2.3V≤V _{en} H≤V _{ss} -0.6 V			±10	μA
V _{CE(sat)H}	Source Output Saturation Voltage (pins 3, 8, 13, 18)	I _o =-0.6 A		1.4	1.8	V
V _{CE(sat)L}	Sink Output Saturation Voltage (pins 3, 8, 13, 18)	I _o =+0.6 A		1.2	1.8	V
V _F	Clamp Diode Forward Voltage	I _o = 600nA		1.3		V
t _r	Rise Time(*)	0.1 to 0.9 V _o		250		ns
t _f	Fall Time(*)	0.9 to 0.1 V _o		250		ns
t _{on}	Turn-on Delay(*)	0.5 V _i to 0.5 V _o		750		ns
t _{off}	Turn-off Delay(*)	0.5 V _i to 0.5 V _o		200		ns

(*) See fig. 1.

Application Information

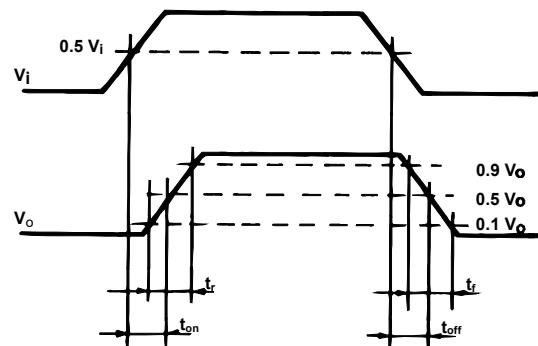


Figure 1: Switching Times

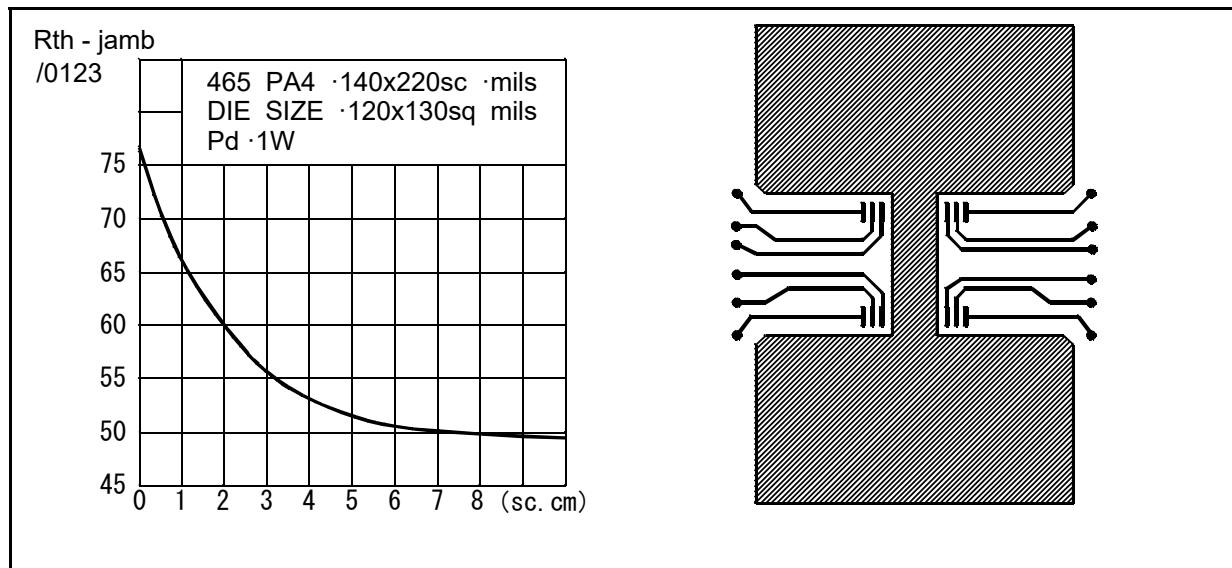
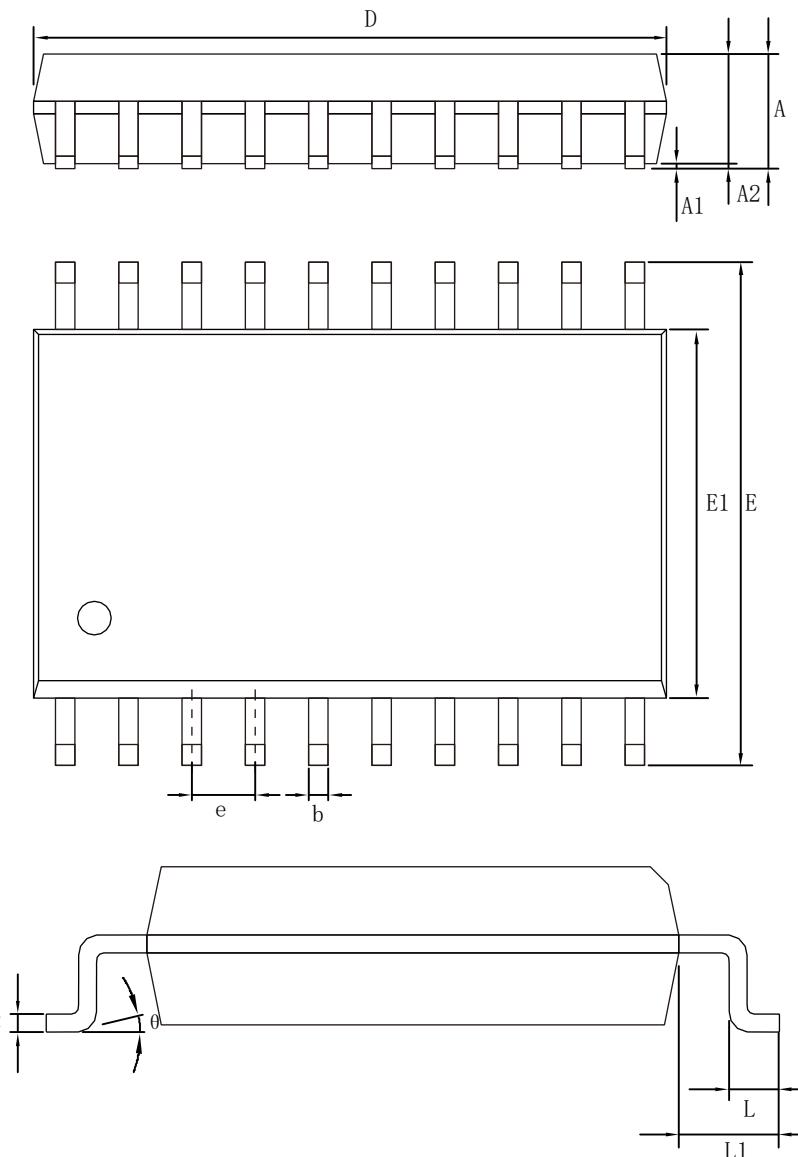



Figure 2: Junction to ambient thermal resistance vs. area on board heatsink (SOP-20 package)

Package Information

SOP-20(SOIC-20)

Size Symbol	Dimensions In Millimeters		Size Symbol	Dimensions In Inches	
	Min(mm)	Max(mm)		Min(in)	Max(in)
A	2.470	2.650	A	0.097	0.104
A1	0.050	0.300	A1	0.002	0.012
A2	2.200	2.440	A2	0.087	0.096
b	0.350	0.500	b	0.014	0.020
c	0.150	0.300	c	0.006	0.012
D	12.54	12.94	D	0.494	0.509
E	10.00	10.60	E	0.394	0.417
E1	7.300	7.700	E1	0.287	0.303
e	1.270(BSC)		e	0.050(BSC)	
L	0.400	1.050	L	0.016	0.041
L1	1.300	1.500	L1	0.051	0.059
θ	0°	8°	θ	0°	8°

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.