

36V, 11MHz, 23V/μs Opamps

Features

- Supply Voltage: 3.3V to 36V
- Offset Voltage: $\pm 100\mu\text{V}$ Maximum
- Differential Input Voltage Range to Supply Rail, can Work as Comparator
- Input Rail to -VS, Rail to Rail Output
- Bandwidth: 11MHz
- Slew Rate: 23V/μs
- Excellent EMI Suppress Performance: 45dB at 1GHz
- Quiescent Current: 2.7mA per Amplifier (Typ)
- -40°C to 125°C Operation Temperature Range
- Small Package:

LM6142 Available in SOP-8 and MSOP-8 Packages

LM6144 Available in SOP-14 and TSSOP-14 Packages

Ordering Information

DEVICE	PACKAGE TYPE	MARKING	PACKING	PACKING QTY
LM6142M/TR	SOP-8	LM6142	REEL	2500pcs/reel
LM6142MM/TR	MSOP-8	LM6142	REEL	3000pcs/reel
LM6144M/TR	SOP-14	LM6144	REEL	2500pcs/reel
LM6144MT/TR	TSSOP-14	LM6144	REEL	2500pcs/reel

General Description

The LM614X series amplifiers are newest high supply voltage amplifiers with low offset, low power and stable high frequency response. Good AC performance with 11MHz bandwidth, 23V/ μ s slew rate and low distortion while drawing only 2.7mA of quiescent current per amplifier. The input common-mode voltage range extends to $-V_S$, and the outputs swing rail-to-rail. The LM614X family can be used as plug-in replacements for many commercially available Op-Amps to reduce power and improve input/output range and performance. The LM6142 Dual is available in Green SOP-8 and MSOP-8 packages. The LM6144 Quad is available in Green SOP-14 and TSSOP-14 packages.

Applications

- Instrumentation
- Active Filters, ASIC Input or Output Amplifier
- Sensor Interface
- Motor Control
- Industrial Control

Pin Configuration

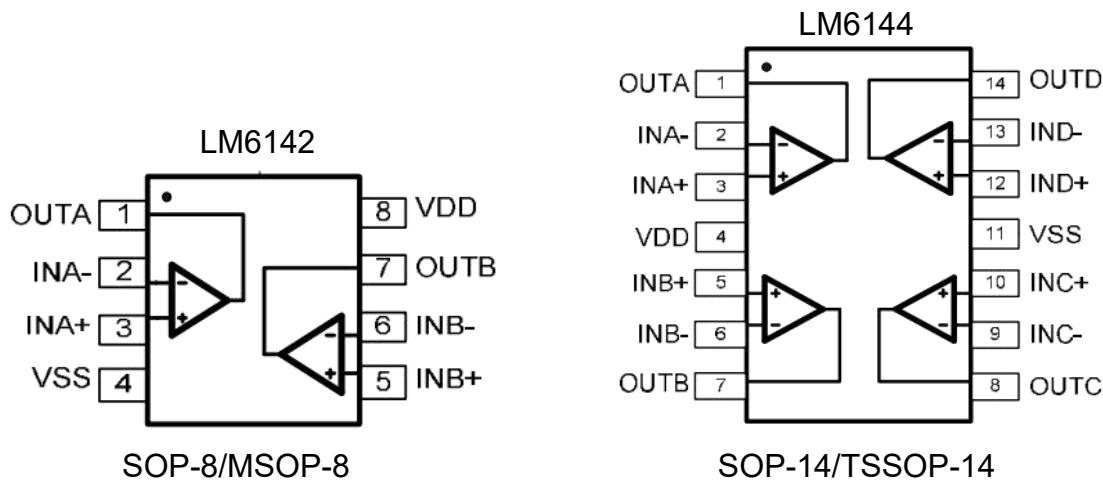


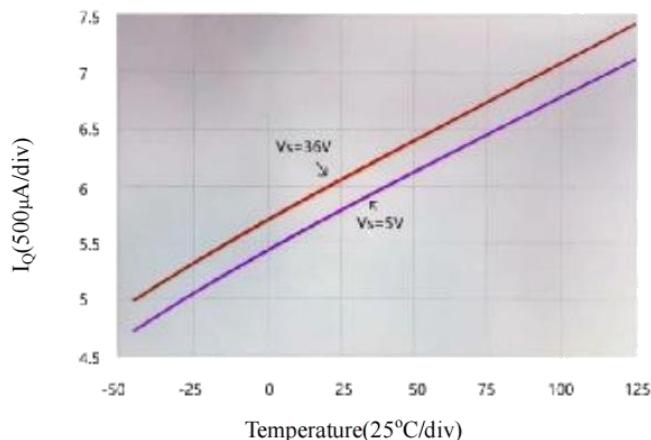
Figure 1. Pin Assignment Diagram

Absolute Maximum Ratings

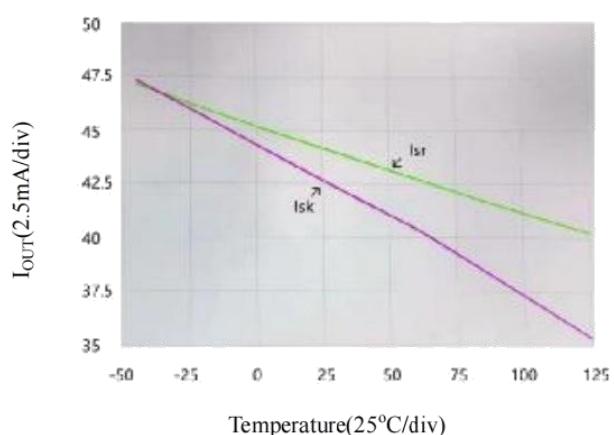
Condition	Min	Max
Power Supply Voltage (V _{DD} to V _{SS})	-0.5V	+40V
Analog Input Voltage (IN+ or IN-)	V _{SS} -0.5V	V _{DD} +0.5V
PDB Input Voltage	V _{SS} -0.5V	+40V
Operating Temperature Range	-40°C	+125°C
Junction Temperature	+160°C	
Storage Temperature Range	-55°C	+150°C
Lead Temperature (soldering, 10sec)	+260°C	
Package Thermal Resistance (TA=+25°C)		
SOP-8, θ _{JA}	125°C/W	
MSOP-8, θ _{JA}	216°C/W	
SOP-14, θ _{JA}	120°C/W	
TSSOP-14, θ _{JA}	180°C/W	
ESD Susceptibility		
HBM	2KV	
MM	300V	

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

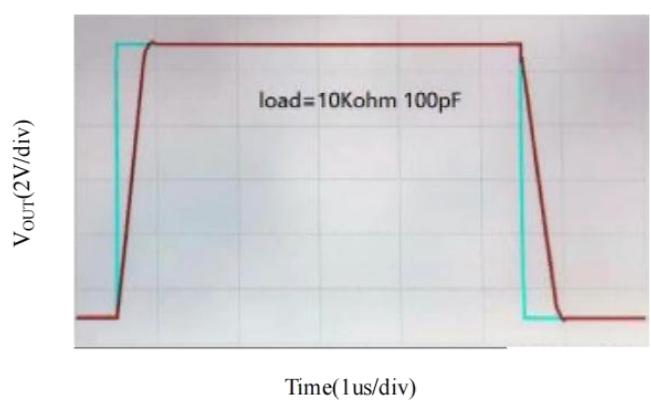
Electrical Characteristics

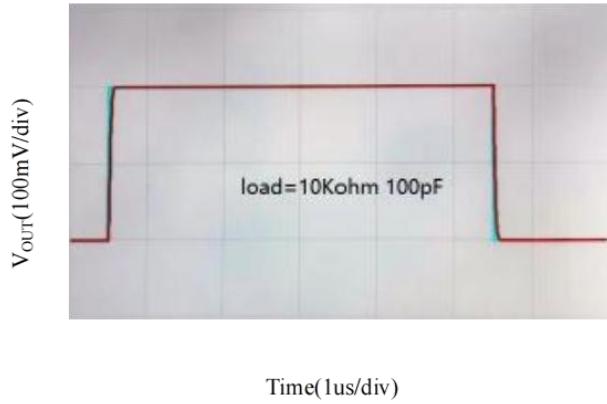

(All test condition is $V_s = 30V$, $T_A = 25^\circ C$, $R_L = \infty$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	LM6142/6144			
			TYP	MIN	MAX	UNITS
INPUT CHARACTERISTICS						
Input Offset Voltage	V_{OS}	$V_{CM} = V_s/2$	1.4	-100	100	μV
Input Bias Current	I_B		100			pA
Input Offset Current	I_{OS}		25			pA
Common-Mode Voltage Range	V_{CM}	$V_s = 30V$	0 to ($V_s - 1.5V$)			V
Common-Mode Rejection Ratio	CMRR	$V_s = 30V$, $V_{CM} = 0V$ to $28.5V$	120	100		dB
Open-Loop Voltage Gain	A_{OL}	$V_s = 30V$, $R_L = 10k\Omega$, $V_{CM} = 0V$ to $28.5V$	130	100		dB
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta T$		2.0			$\mu V/^\circ C$
OUTPUT CHARACTERISTICS						
Output Voltage Swing from Rail	V_{OH}	$V_s = 30V$, $R_L = 10k\Omega$	29.85	29.65		V
	V_{OL}		100		300	mV
	V_{OH}	$V_s = 30V$, $R_L = 2k\Omega$	29.25	28.0		V
	V_{OL}		500		1500	mV
Output Current	I_{SOURCE}	$V_s = 30V$	39			mA
	I_{SINK}		35			
POWER SUPPLY						
Operating Voltage Range			3.3			V
			36			V
Power Supply Rejection Ratio	PSRR	$V_s = +3.3V$ to $+30V$, $V_{CM} = +0.5V$	120	100		dB
Quiescent Current / Amplifier	I_Q		2.7			mA
DYNAMIC PERFORMANCE						
Gain-Bandwidth Product	GBP		11			MHz
Slew Rate	S_R	$G = +1$, 5V Output Step	23			$V/\mu s$
NOISE PERFORMANCE						
Input Voltage Noise	$e_{n,p-p}$	$f = 0.1Hz$ to $10Hz$	3.0			μV_{RMS}
Input Voltage Noise	e_n	$f = 1kHz$	34			nV/\sqrt{Hz}
		$f = 10kHz$	13			

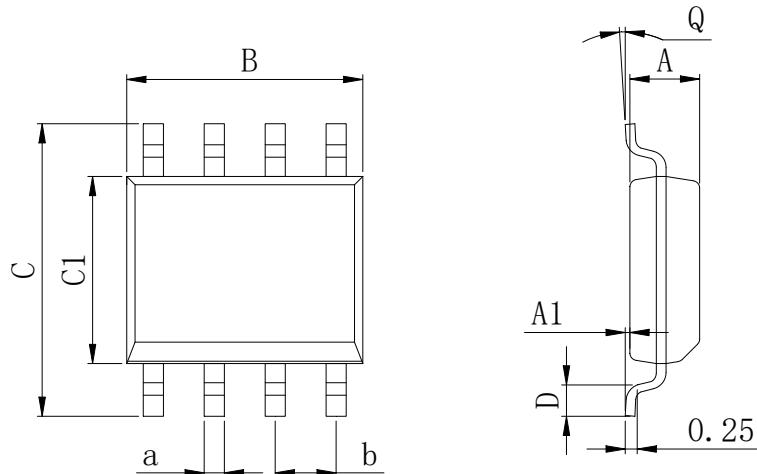

Typical Performance Characteristics

$T_A=+25^\circ\text{C}$, $V_s=+30\text{V}$, and $R_L=\infty$ connected to $V_s/2$, unless otherwise specified.

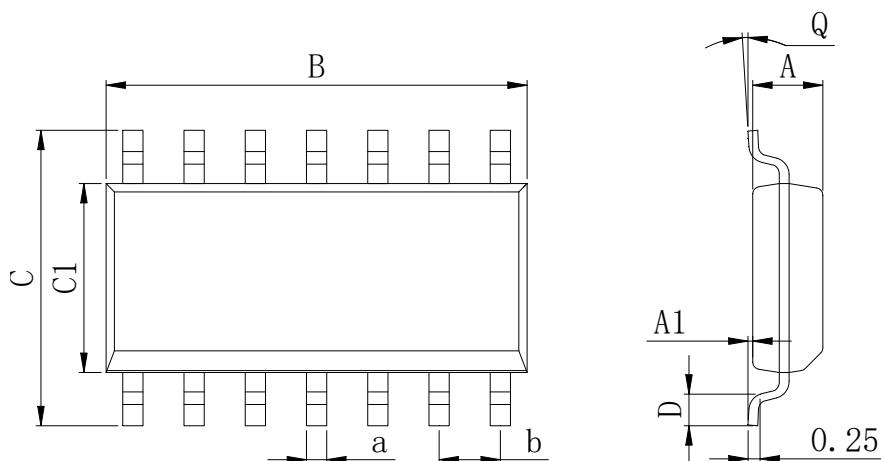

Supply Current(LM6142) vs. Temperature


Output Short-Circuit Current vs. Temperature

Large Signal Pulse Response

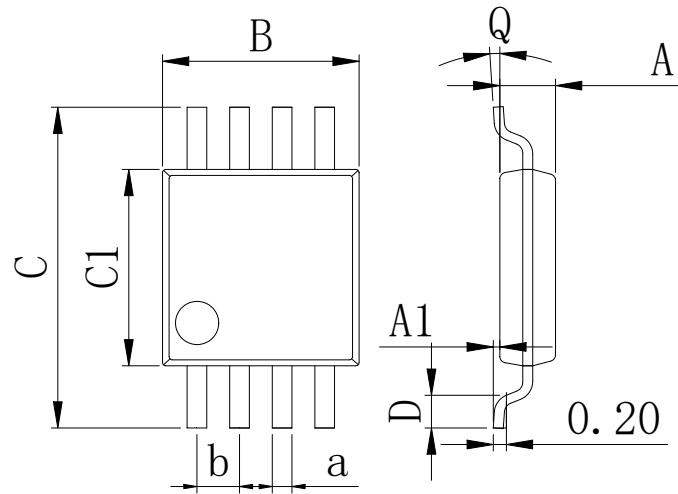


Small Signal Pulse Response


Physical Dimensions

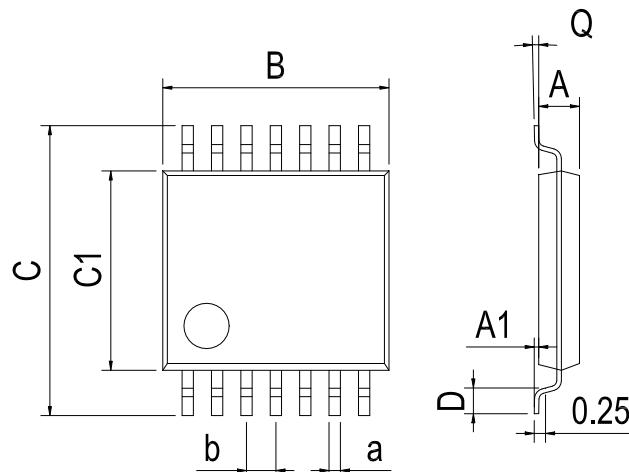
SOP-8 (150mil)

Dimensions In Millimeters(SOP-8)									
Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	


SOP-14

Dimensions In Millimeters(SOP-14)									
Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	1.35	0.05	8.55	5.80	3.80	0.40	0°	0.35	1.27 BSC
Max:	1.55	0.20	8.75	6.20	4.00	0.80	8°	0.45	

Physical Dimensions


MSOP-8

Dimensions In Millimeters(MSOP-8)

Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	

TSSOP-14

Dimensions In Millimeters(TSSOP-14)

Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	

Revision History

DATE	REVISION	PAGE
2017-1-16	New	1-9

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.