

Features

Complementary Pair.
One 3904-Type NPN.
One 3906-Type PNP.
Epitaxial Planar Die Construction.
Ideal for Low Power Amplification and Switching.

Pin 1
SOT-363

Pin 1

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
HMMDT39467F	SOT-363	K46	3000

Maxmim Ratings (Ta=25 unless otherwise noted)

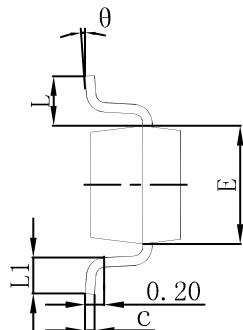
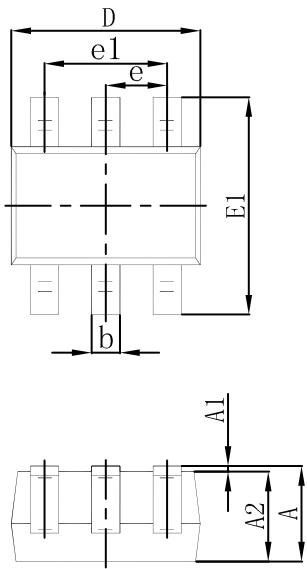
Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	60	V
V _{CEO}	Collector-Emitter Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current	200	mA
P _C	Collector Power Dissipation	200	mW
R _{θJA}	Thermal Resistance From Junction To Ambient	625	°C/W
T _J , T _{stg}	Operation Junction And Storage Temperature Range	-55~+150	°C

NPN 3904 Electrical Charcteristics (Ta=25 unless otherwise noted)

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
V _{(BR)CBO}	Collector-base breakdown voltage	I _C =10μA, I _E =0	60			V
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C =1mA, I _B =0	40			V
V _{(BR)EBO}	Emitter-base breakdown voltage	I _E =10μA, I _C =0	5			V
I _{CEO}	Collector cut-off current	V _{CE} =30V, I _B =0			50	nA
I _{CBO}	Collector cut-off current	V _{CB} =30V, I _E =0			50	nA
I _{EBO}	Emitter cut-off current	V _{EB} =5V, I _C =0			50	nA
h _{FE(1)}	DC current gain(1)	V _{CE} =1V, I _C =100μA	40			
h _{FE(2)}	DC current gain(2)	V _{CE} =1V, I _C =1mA	70			
h _{FE(3)}	DC current gain(3)	V _{CE} =1V, I _C =10mA	100		300	
h _{FE(4)}	DC current gain(4)	V _{CE} =1V, I _C =50mA	60			
h _{FE(5)}	DC current gain(5)	V _{CE} =1V, I _C =100mA	30			
V _{CE(sat)}	Collector-emitter saturation voltage	I _C =10mA, I _B =1mA			0.2	V
		I _C =50mA, I _B =5mA			0.3	V
V _{BE(sat)}	Base-emitter saturation voltage	I _C =10mA, I _B =1mA	0.65		0.85	V
		I _C =50mA, I _B =5mA			0.95	V
f _T	Transition frequency	V _{CE} =20V, I _C =10mA, f=100MHz	300			MHz
C _{ob}	Collector output capacitance	V _{CB} =5V, I _E =0, f=1MHz			4	pF
NF	Noise figure	V _{CE} =5V, I _C =0.1mA, f=1kHz, R _g =1KΩ			5	dB
t _d	Delay time	V _{CC} =3V, V _{BE(off)} =0.5V, I _C =10mA, I _{B1} =I _{B2} =1mA			35	ns
t _r	Rise time				35	ns
t _s	Storage time	V _{CC} =3V, I _C =10mA, I _{B1} =I _{B2} =1mA			225	ns
t _f	Fall time				75	ns

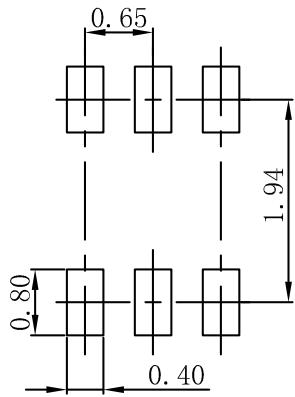
Maxmim Ratings (Ta=25 unless otherwise noted)

Symbol	Parameter	Value	Unit
V_{CBO}	Collector-Base Voltage	-40	V
V_{CEO}	Collector-Emitter Voltage	-40	V
V_{EBO}	Emitter-Base Voltage	-5	V
I_C	Collector Current	-200	mA
P_C	Collector Power Dissipation	200	mW
$R_{\Theta JA}$	Thermal Resistance From Junction To Ambient	625	°C/W
T_J, T_{stg}	Operation Junction And Storage Temperature Range	-55~+150	°C



PNP 3906 Electrcal Charcteristics (Ta=25 unless otherwise noted)

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$V_{(BR)CBO}^*$	Collector-base breakdown voltage	$I_C=10\mu A, I_E=0$	-40			V
$V_{(BR)CEO}^*$	Collector-emitter breakdown voltage	$I_C=-1mA, I_B=0$	-40			V
$V_{(BR)EBO}^*$	Emitter-base breakdown voltage	$I_E=-10\mu A, I_C=0$	-5			V
I_{CEX}^*	Collector cut-off current	$V_{CE}=-30V, V_{EB(off)}=-3V$			-50	nA
I_{CBO}	Collector cut-off current	$V_{CB}=-30V, I_E=0$			-50	nA
I_{EBO}	Base cut-off current	$V_{EB}=-5V, I_E=0$			-50	nA
$h_{FE(1)}^*$	DC current gain(1)	$V_{CE}=-1V, I_C=-100\mu A$	60			
$h_{FE(2)}^*$	DC current gain(2)	$V_{CE}=-1V, I_C=-1mA$	80			
$h_{FE(3)}^*$	DC current gain(3)	$V_{CE}=-1V, I_C=-10mA$	100		300	
$h_{FE(4)}^*$	DC current gain(4)	$V_{CE}=-1V, I_C=-50mA$	60			
$h_{FE(5)}^*$	DC current gain(5)	$V_{CE}=-1V, I_C=-100mA$	30			
$V_{CE(sat)}^*$	Collector-emitter saturation voltage	$I_C=-10mA, I_B=-1mA$			-0.25	V
		$I_C=-50mA, I_B=-5mA$			-0.4	V
$V_{BE(sat)}^*$	Base-emitter saturation voltage	$I_C=-10mA, I_B=-1mA$	-0.65		-0.85	V
		$I_C=-50mA, I_B=-5mA$			-0.95	V
f_T	Transition frequency	$V_{CE}=-20V, I_C=-10mA, f=100MHz$	250			MHz
C_{ob}	Collector output capacitance	$V_{CB}=-5V, I_E=0, f=1MHz$			4.5	pF
NF	Noise figure	$V_{CE}=-5V, I_C=-0.1mA, f=1kHz, R_g=1K\Omega$			4	dB
t_d	Delay time	$V_{CC}=-3V, V_{BE(off)}=-0.5V,$ $I_C=-10mA, I_{B1}=I_{B2}=-1mA$			35	ns
t_r	Rise time				35	ns
t_s	Storage time	$V_{CC}=-3V, I_C=-10mA,$ $I_{B1}=I_{B2}=-1mA$			225	ns
t_f	Fall time				75	ns

*Pulse test: pulse width $\leq 300\mu s$, duty cycle $\leq 2.0\%$.



SOT-363 Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
c	0.100	0.150	0.004	0.006
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.400	0.085	0.094
e	0.650 TYP		0.026 TYP	
e1	1.200	1.400	0.047	0.055
L	0.525 REF		0.021 REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

SOT-363 Suggested Pad Layout

Note:

1. Controlling dimension: in millimeters.
2. General tolerance: ± 0.05 mm.
3. The pad layout is for reference purposes only.

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.