

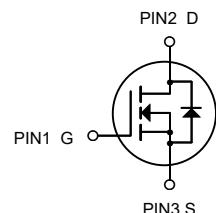
Description

The HAOD538 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

TO-252-2L

General Features

$V_{DS} = 30V$ $I_D = 150A$


$R_{DS(ON)} < 2.9\text{ m}\Omega$ @ $V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

N-Channel MOSFET

Package Marking and Ordering Information

Product ID	Pack	Brand	Qty(PCS)
HAOD538	TO-252-2L	HXY MOSFET	2500

Absolute Maximum Ratings ($T_c=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	± 20	V
$I_D @ T_c=25^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10V^1$	150	A
$I_D @ T_c=100^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10V^1$	80	A
I_{DM}	Pulsed Drain Current ²	450	A
EAS	Single Pulse Avalanche Energy ³	580	mJ
I_{AS}	Avalanche Current	60	A
$P_D @ T_c=25^\circ\text{C}$	Total Power Dissipation ⁴	87	W
T_{STG}	Storage Temperature Range	-55 to 150	$^\circ\text{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^\circ\text{C}$
$R_{\theta JA}$	Thermal Resistance Junction-Ambient 1	62	$^\circ\text{C}/\text{W}$
$R_{\theta JC}$	Thermal Resistance Junction-Case1	2.1	$^\circ\text{C}/\text{W}$

Electrical characteristic ($T_J = 25^\circ\text{C}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
BV_{DSS}	Drain to source breakdown voltage	$V_{\text{GS}}=0\text{V}$, $I_{\text{D}}=250\text{uA}$	30			V
$\Delta \text{BV}_{\text{DSS}} / \Delta T_J$	Breakdown voltage temperature coefficient	$I_{\text{D}}=250\text{uA}$, referenced to 25°C		0.02		$\text{V}/^\circ\text{C}$
I_{DSS}	Drain to source leakage current	$V_{\text{DS}}=30\text{V}$, $V_{\text{GS}}=0\text{V}$			1	uA
		$V_{\text{DS}}=24\text{V}$, $T_J=125^\circ\text{C}$			50	uA
I_{GSS}	Gate to source leakage current, forward	$V_{\text{GS}}=20\text{V}$, $V_{\text{DS}}=0\text{V}$			100	nA
	Gate to source leakage current, reverse	$V_{\text{GS}}=-20\text{V}$, $V_{\text{DS}}=0\text{V}$			-100	nA
$V_{\text{GS(TH)}}$	Gate threshold voltage	$V_{\text{DS}}=V_{\text{GS}}$, $I_{\text{D}}=250\text{uA}$	1.2		2.4	V
$R_{\text{DS(ON)}}$	Drain to source on state resistance	$V_{\text{GS}}=4.5\text{V}$, $I_{\text{D}}=30\text{A}$, $T_J=25^\circ\text{C}$		2.2	4.8	$\text{m}\Omega$
		$V_{\text{GS}}=10\text{V}$, $I_{\text{D}}=30\text{A}$, $T_J=25^\circ\text{C}$		1.5	2.9	$\text{m}\Omega$
		$V_{\text{GS}}=10\text{V}$, $I_{\text{D}}=30\text{A}$, $T_J=125^\circ\text{C}$		2.5		$\text{m}\Omega$
G_{fs}	Forward transconductance	$V_{\text{DS}}=5\text{V}$, $I_{\text{D}}=30\text{A}$		73		S
C_{iss}	Input capacitance	$V_{\text{GS}}=0\text{V}$, $V_{\text{DS}}=15\text{V}$, $f=1\text{MHz}$		6272		pF
C_{oss}	Output capacitance			1022		
C_{rss}	Reverse transfer capacitance			718		
$t_{\text{d(on)}}$	Turn on delay time	$V_{\text{DS}}=15\text{V}$, $I_{\text{D}}=30\text{A}$, $R_{\text{G}}=4.7\Omega$, $V_{\text{GS}}=10\text{V}$ (note 4,5)		20		ns
t_r	Rising time			58		
$t_{\text{d(off)}}$	Turn off delay time			158		
t_f	Fall time			77		
Q_g	Total gate charge	$V_{\text{DS}}=24\text{V}$, $V_{\text{GS}}=10\text{V}$, $I_{\text{D}}=30\text{A}$, $I_{\text{G}}=5\text{mA}$ (note 4,5)		143		nC
Q_{gs}	Gate-source charge			17		
Q_{gd}	Gate-drain charge			43		
R_{g}	Gate resistance	$V_{\text{DS}}=0\text{V}$, Scan F mode		4.2		Ω
I_s	Continuous source current	Integral reverse p-n Junction diode in the MOSFET			110	A
I_{SM}	Pulsed source current				440	A
V_{SD}	Diode forward voltage drop.	$I_{\text{S}}=45\text{A}$, $V_{\text{GS}}=0\text{V}$			1.4	V
t_{rr}	Reverse recovery time	$I_{\text{S}}=30\text{A}$, $V_{\text{GS}}=0\text{V}$, $dI_{\text{F}}/dt=100\text{A}/\text{us}$		26		ns
Q_{rr}	Reverse recovery charge			10		nC

※. Notes

1. Repetitive rating : pulse width limited by junction temperature.
2. $L = 0.5\text{mH}$, $I_{\text{AS}} = 48\text{A}$, $V_{\text{DD}} = 30\text{V}$, $R_{\text{G}} = 25\Omega$, Starting $T_J = 25^\circ\text{C}$
3. $I_{\text{SD}} \leq 30\text{A}$, $dI/dt = 100\text{A}/\text{us}$, $V_{\text{DD}} \leq \text{BV}_{\text{DSS}}$, Starting $T_J = 25^\circ\text{C}$
4. Pulse Test : Pulse Width $\leq 300\text{us}$, duty cycle $\leq 2\%$.

Typical Electrical and Thermal Characteristics

Fig. 1. On-state characteristics

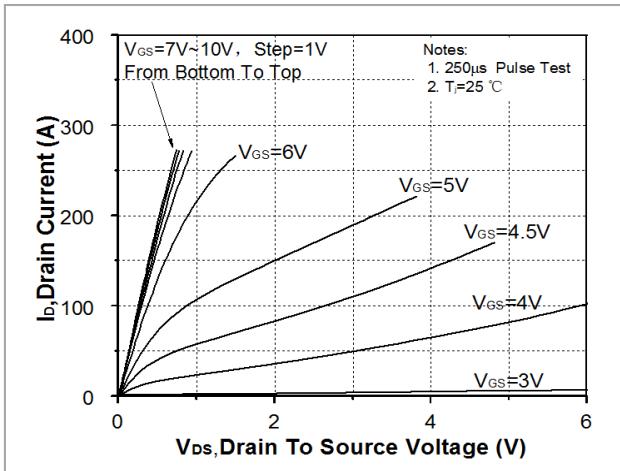


Fig. 2. Transfer Characteristics

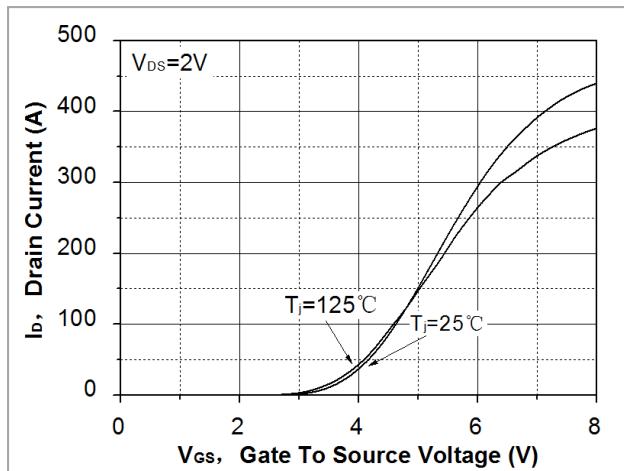


Fig. 3. On-resistance variation vs. drain current and gate voltage

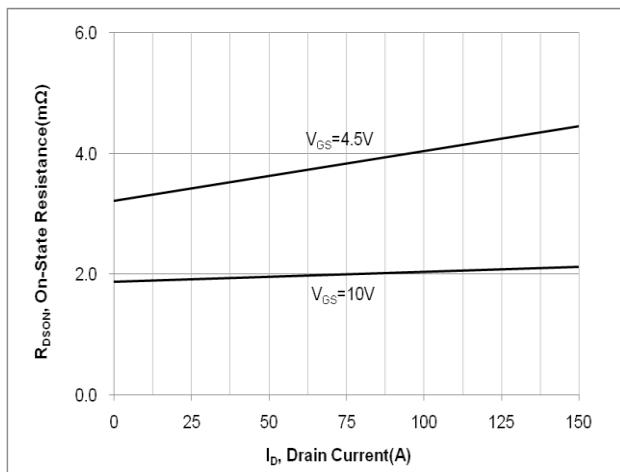


Fig. 4. On-state current vs. diode forward voltage

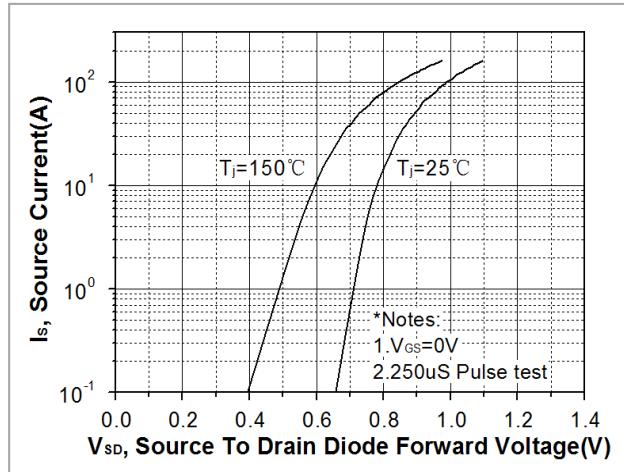


Fig 5. Breakdown voltage variation vs. junction temperature

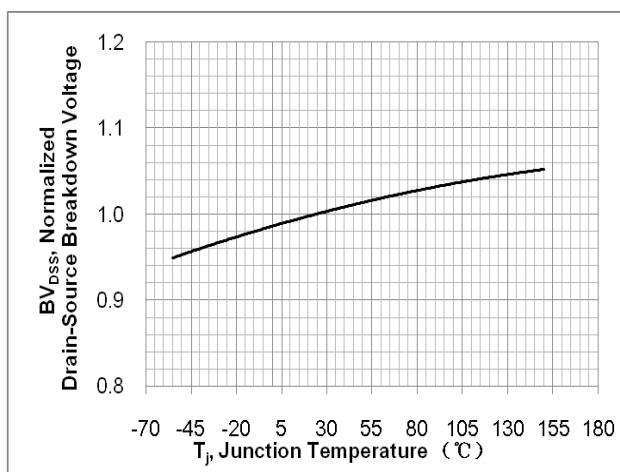


Fig. 6. On-resistance variation vs. junction temperature

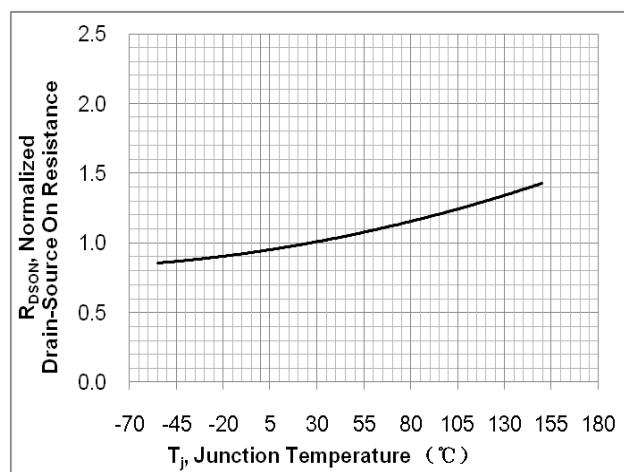


Fig. 7. Gate charge characteristics

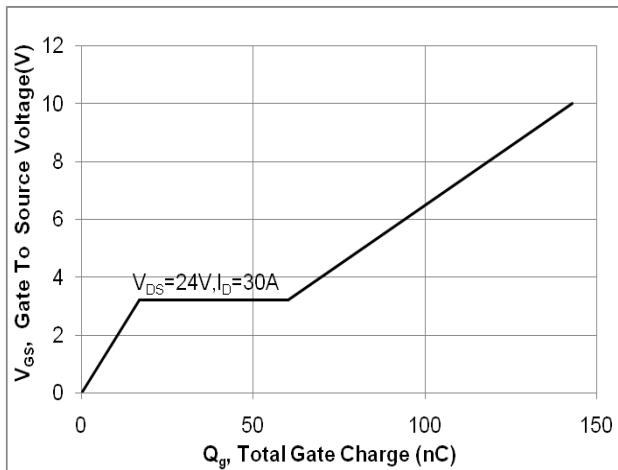


Fig. 8. Capacitance Characteristics

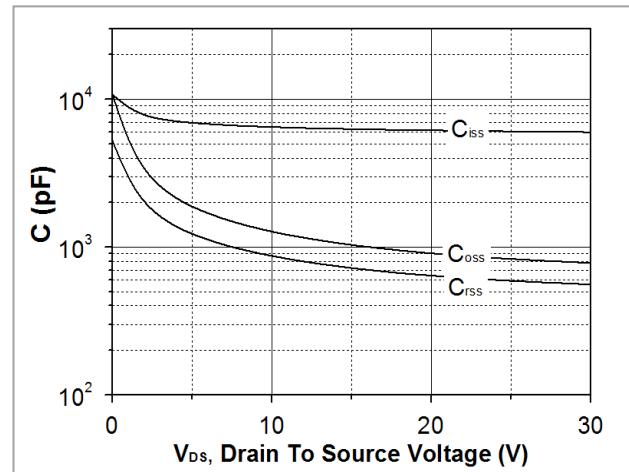


Fig. 9. Maximum safe operating area

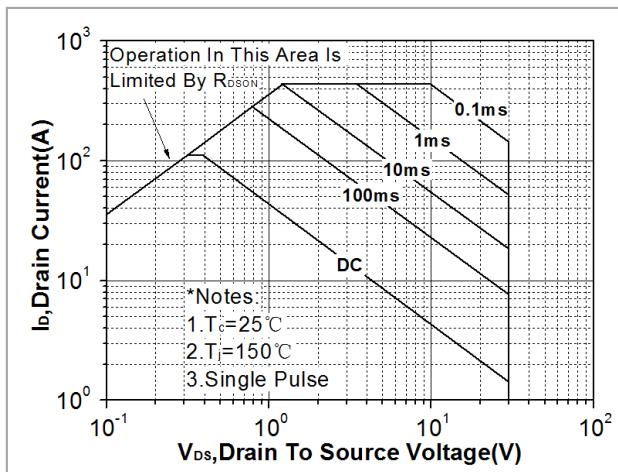


Fig. 10. Maximum drain current vs. case temperature

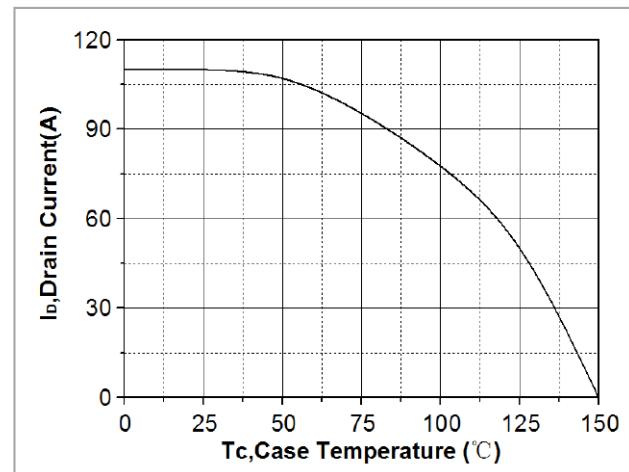
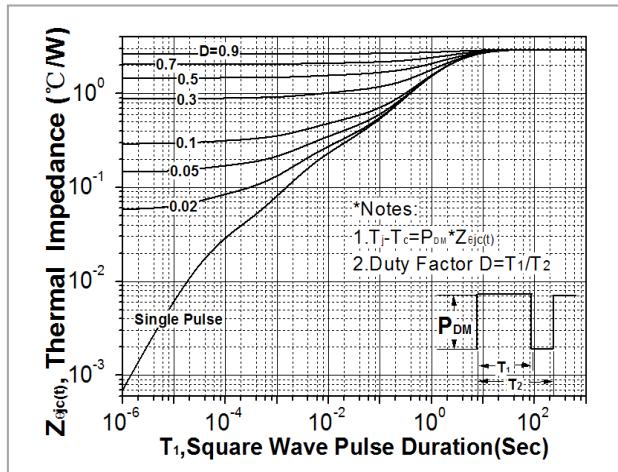



Fig. 11. Transient thermal response curve

Test Circuit

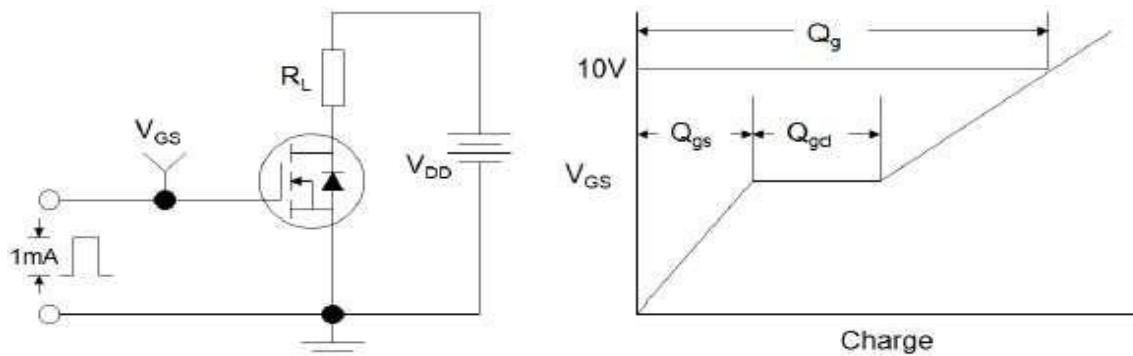


Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

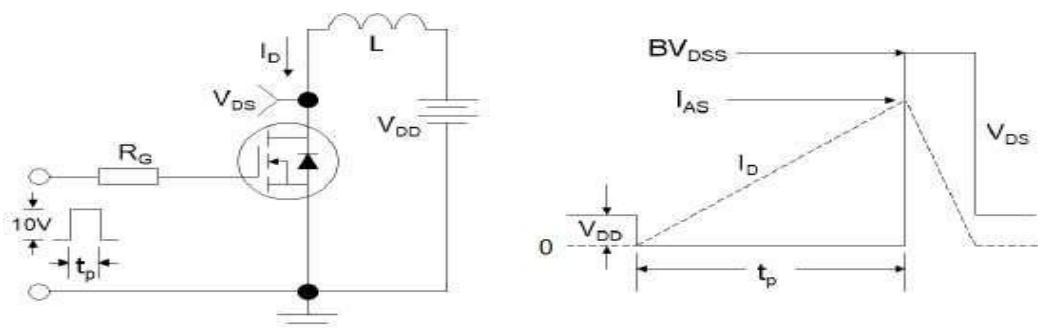
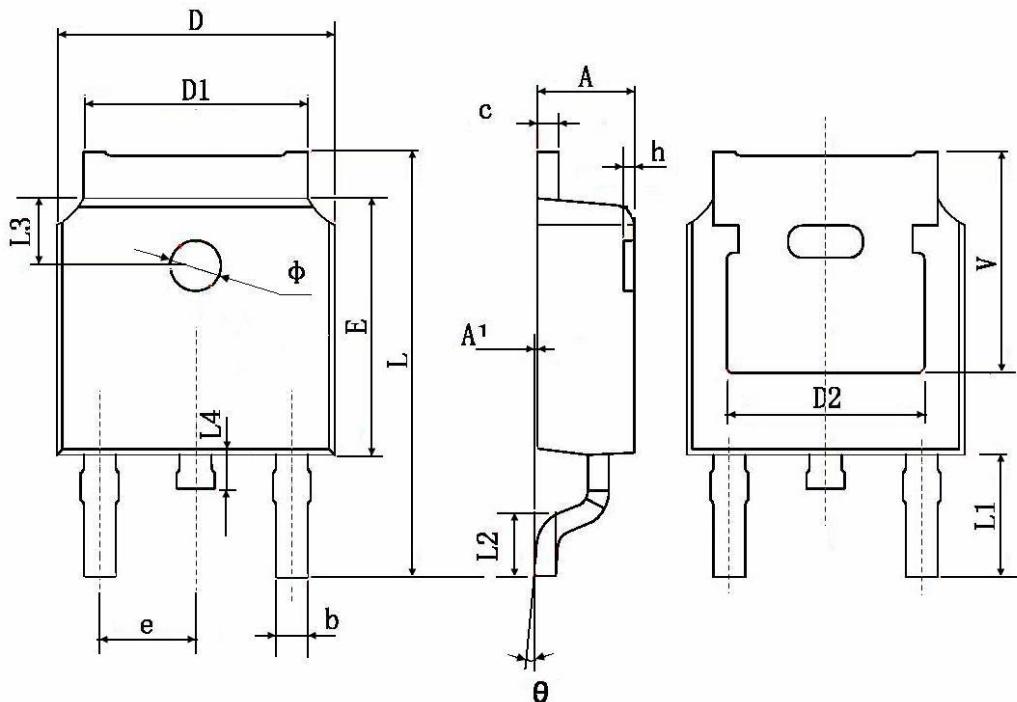



Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms

TO-252-2L Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
b	0.660	0.860	0.026	0.034
c	0.460	0.580	0.018	0.023
D	6.500	6.700	0.256	0.264
D1	5.100	5.460	0.201	0.215
D2	0.483 TYP.		0.190 TYP.	
E	6.000	6.200	0.236	0.244
e	2.186	2.386	0.086	0.094
L	9.800	10.400	0.386	0.409
L1	2.900 TYP.		0.114 TYP.	
L2	1.400	1.700	0.055	0.067
L3	1.600 TYP.		0.063 TYP.	
L4	0.600	1.000	0.024	0.039
phi	1.100	1.300	0.043	0.051
theta	0°	8°	0°	8°
h	0.000	0.300	0.000	0.012
V	5.350 TYP.		0.211 TYP.	

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.