

8-Channel 1-wire Dimming Parallel White LED Driver with Ultra Low Dropout Current Source

Features

- Drive up to 8 LEDs with 20mA maximum current
- Q-Mirror™ technique ensuring LEDs current matching accuracy $\pm 5\%$ (typical)
- Ultra low dropout: 50mV/20mA (typical)
- 2.8V to 5.5V operating input voltage range
- 16-step linear scale LED brightness control
- Deglitch circuit eliminating interference at EN pin
- No EMI and switch noise
- Less than 0.1 μ A quiescent current in shutdown mode
- Thermal shutdown protection
- WQFN 3mmx3mmx0.75mm-16L package

Applications

- Mobile phone
- Digital camera
- PDA, MP3

Description

The AW9358B is an 8-channel parallel white LED driver with ultra low dropout constant-current source. The AW9358B can drive 8 LEDs and each LED's maximum current is up to 20mA which is set by the internal resistor. The proprietary Q-Mirror™ technique is used in the AW9358B, which makes the 8 LEDs current matching to $\pm 5\%$.

The AW9358B use 1-Wire Brightness Control, 16-Step Linear Scale LED Brightness Control, which effectively avoid the interference caused by the PWM dimming mode.

The AW9358B has an internal deglitch circuit can effectively eliminate the influence of the glitch signal for EN input. The AW9358B requires only a 50mV (typical) dropout voltage at a 20mA load. The feature makes AW9358B ideal for battery-operated systems, such as personal digital assistants. The AW9358B only need one ceramic capacitor making the system design easier, and use less PCB. The shutdown current of the AW9358B is less than 0.1 μ A.

The AW9358B is available in QFN 3mmx3mmx0.75mm-16L package and is specified over the -40°C to +85°C temperature range.

Typical Application Circuits

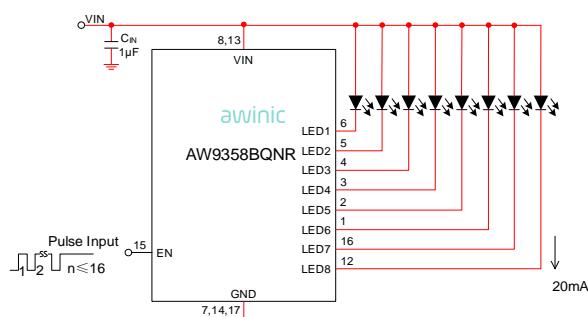


Figure 1 AW9358B Typical Application

Pin Configuration And Top Mark

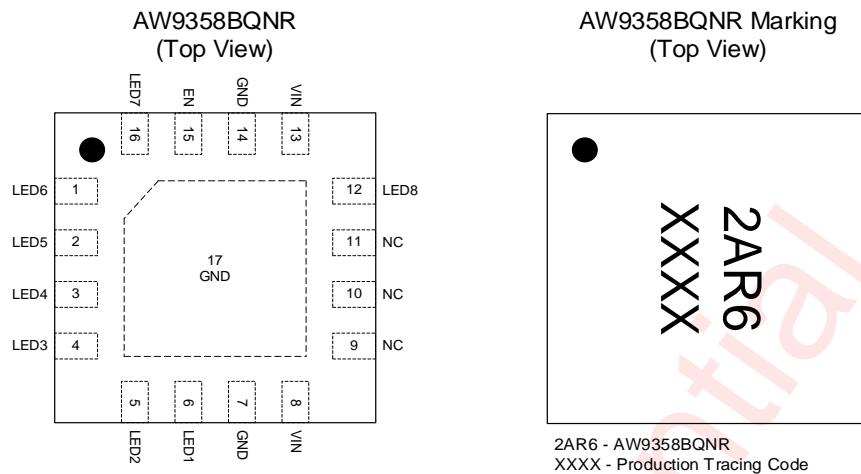


Figure 2 Pin Configuration of AW9358B

Pin Definition

PIN	Symbol	Description
1	LED6	Current sink for LED6
2	LED5	Current sink for LED5
3	LED4	Current sink for LED4
4	LED3	Current sink for LED3
5	LED2	Current sink for LED2
6	LED1	Current sink for LED1
7	GND	Ground
8	VIN	Power supply Input
9-11	NC	No connect
12	LED8	Current sink for LED8
13	VIN	Power supply Input
14	GND	Ground
15	EN	Enable pin. Active high, with an internal 150kΩ pull-down resistor
16	LED7	Current sink for LED7
17	GND	Ground

AWINIC LED Driver Series

Product	Channels	Type	Description	Package
AW9358B	8	Current Sink	8 Independent 1-wire Configurable 20mA LED Driver	QFN-16L
AW9364	4	Current Sink	4 Independent 1-wire Configurable 20mA LED Driver	DFN-8L
AW9364B	4	Current Sink	4 Independent 1-wire Configurable 20mA LED Driver	DFN-8L

Typical Application Circuits

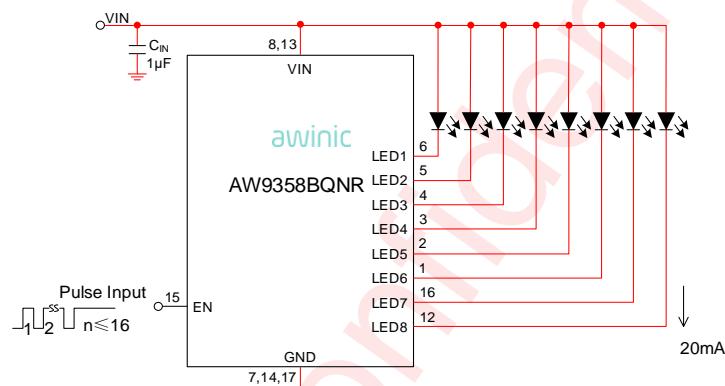


Figure 3 AW9358B Typical Application

Notice for Typical Application Circuits:

- 1: Please place C_{IN} as close to the chip as possible.
- 2: For the sake of driving capability, the power lines and the connection lines of LED should be short and wide as possible.
- 3: The power path marked in red as shown in the figures above.

Ordering Information

Part Number	Temperature	Package	Marking	Moisture sensitivity level	Environmental Information	Delivery Form
AW9358BQNR	-40°C~85°C	QFN 3mmx3mmx 0.75mm-16L	2AR6	MSL3	RoHS+HF	6000 units/Tape and Reel

Absolute Maximum Ratings^(NOTE1)

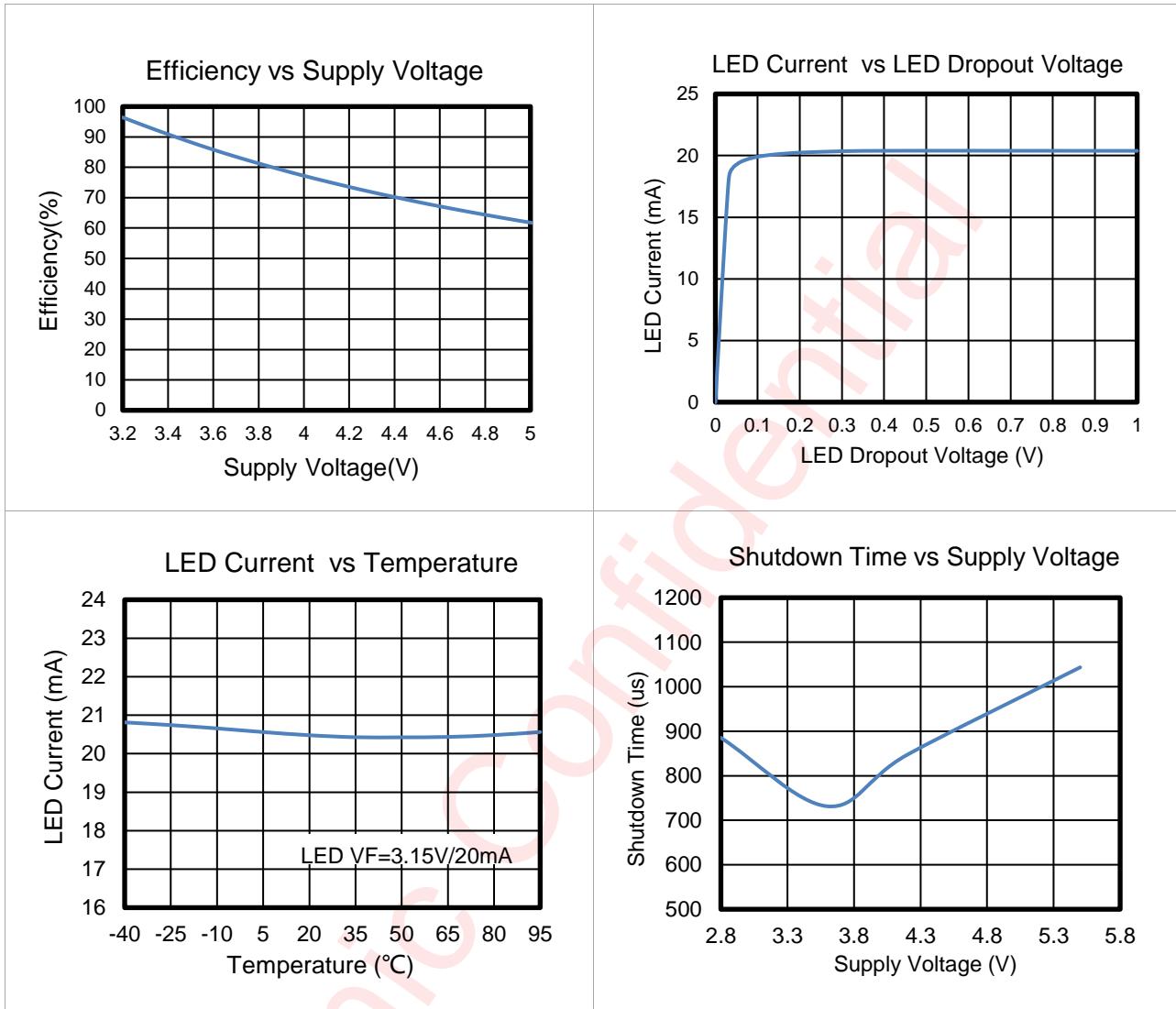
Parameter		Range
Supply voltage range VIN		-0.3V to 6 V
Input voltage range	EN	-0.3V to 6V
Output voltage range	LED1~LED8	-0.3V to 6V
Junction-to-ambient thermal resistance θ_{JA}		79°C /W
Maximum operating junction temperature T_{JMAX}		125°C
Storage temperature T_{STG}		-65°C to 150°C
Lead temperature (soldering 10 seconds)		260°C
ESD (NOTE 2)		
HBM		±2kV
CDM		±1.5kV
Latch-Up		
Test method: JEDEC JESD78F-2022		+IT: 200mA -IT: -200mA

Recommended Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VIN	Power Supply voltage	2.8	3.6	5.5	V
T_A	Operating free-air temperature range	-40	25	85	°C
C_{IN}	Input capacitor	0.1	1	100	μF

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin. Test method: ANSI/ESDA/JEDEC JS-001-2017. CDM test method: ANSI/ESDA/JEDEC JS-002-2018.


Electrical Characteristics

Test Condition: $T_A=25^\circ\text{C}$, $V_{IN}=3.6\text{V}$, $C_{in} = 1\mu\text{F}$ (unless otherwise specified)

Symbol	Description	Test Condition	Min	Typ	Max	Units
SUPPLY VOLTAGE AND CURRENT						
V_{IN}	Power Supply Voltage		2.8		5.5	V
I_{SD}	Shutdown Current	$V_{EN}=0\text{V}$, $V_{IN}=5.5\text{V}$		0.1	1	μA
I_Q	Quiescent Current	$V_{EN}=V_{IN}$, LED Pin floating		312	475	μA
$I_{LEAKAGE}$	Output leakage current	$V_{EN}=0\text{V}$, $V_{LEDx}=5.5\text{V}$		0.1	1	μA
CURRENT SINK						
I_{LED}	Output Current	All LEDs 100% setting	18.5	20	21.5	mA
ΔI_{LED}	Channel to channel current error	All LEDs 100% setting	-5		5	%
$V_{DROPOUT}$	LED Dropout Voltage	$I_{LED}=20\text{mA}$		50	170	mV
ENABLE						
V_{IH}	Enable High Level Input Voltage		1.3			V
V_{IL}	Enable Low Level Input Voltage				0.3	V
R_{PD}	Pull down resistor of EN Pin	$V_{EN}=0.4\text{V}$	50	150	250	k Ω
T_{ON}	Startup Time			10	20	μs
T_{LO}	EN Low Time for Dimming		0.5		500	μs
T_{HI}	EN High Time for Dimming		0.5			μs
T_{OFF}	Shutdown Delay Time	Delay time when pin EN go to low level after which the AW9358B shutdown completely		800	2500	μs
T_{SD}	Thermal shutdown threshold			150		
	Thermal shutdown hysteresis			20		°C

Typical Operation Characteristics

Test condition: $T_A=25^\circ\text{C}$, $V_{IN}=3.6\text{V}$, $C_{in} = 1\mu\text{F}$, unless otherwise specified.

Functional Block Diagram

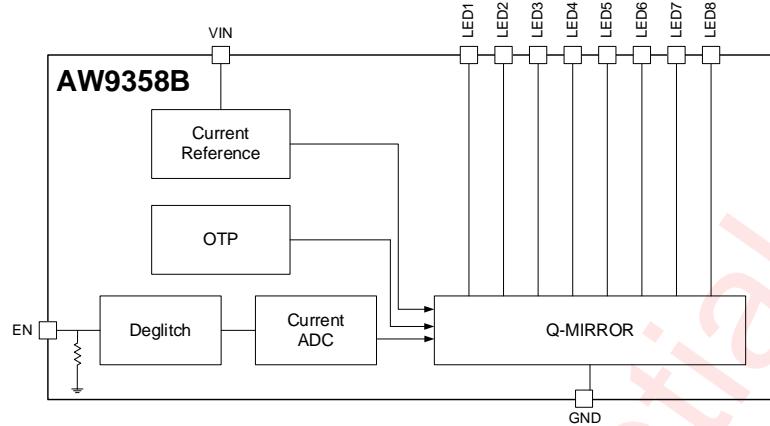


Figure 4 Function Block Diagram of AW9358B

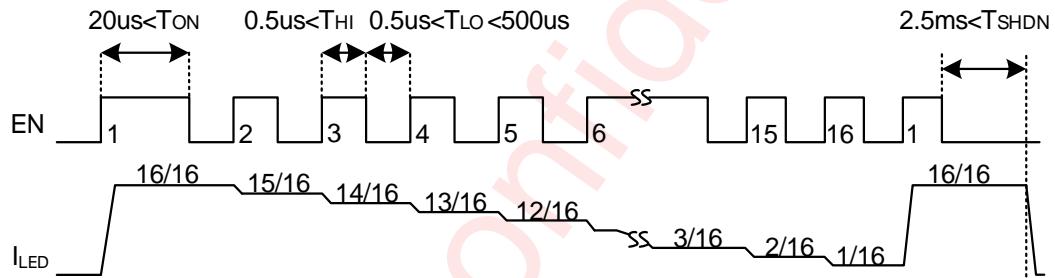


Figure 5 1-wire brightness control Interface Timing of AW9358B

Detailed Description

The AW9358B is an 8-channel parallel white LED driver with ultra low dropout constant-current source. The AW9358B mainly used in new generation mobile phone and portable devices which need lower dropout voltage LED. Each LED's maximum current is up to 20mA which is set by the internal resistor. The AW9358B use 1-wire pulse count dimming mode, realizing 16 step linear adjustable of LED brightness control.

Enable Input

The EN input is used to enable or disable the AW9358B. Pulling the EN pin to high voltage will enable the device. For producing constant, non-pulsating output current compare to conventional pulse width modulation (PWM) dimming scheme, the AW9358B incorporates a 4-bit DAC for brightness control to program the output current at 16 continuous steps: 20~1.25mA. Table 1 shows detail for current setting.

Table 1 Current Setting

EN Rise Edge Number	Current (mA)	EN Rise Edge Number	Current (mA)
1	20	9	10
2	18.75	10	8.75
3	17.5	11	7.5
4	16.25	12	6.25
5	15	13	5
6	13.75	14	3.75
7	12.5	15	2.5
8	11.25	16	1.25

The figure 5 shows the detail operation of 16-steps brightness control. When 1-wire pulse counting dimming is used, the startup time TON is recommended to be greater than 20 μ s for enabling the device, the pulse high time THI recommended to be greater than 0.5 μ s, and the pulse low time TLO is recommended to be greater than 0.5 μ s and less than 500 μ s. A constant current is sourced as long as the EN signal remains high. The shutdown feature reduces quiescent current to less than 0.1 μ A.

Deglitch Circuit

In portable applications such as mobile phones, digital cameras and other portable applications, the interference between the signal lines on the PCB is inevitable. The AW9358B has an internal deglitch circuit for filtering the noise of the EN input. Internal Deglitch circuit can eliminate EN pin less than 80ns high level glitch, effectively avoid the false trigger of 1-wire pulse counting dimming caused by the interference of external circuit.

Over Thermal Protection

The AW9358B has an internal over thermal protection circuit. The over temperature circuit will turn off the output current to decrease the power dissipation when the junction temperature exceeds 150°C and will resume the output circuit when the junction temperature falls below 130°C

Application Information

LED Brightness Dimming Control

The AW9358B incorporates a 1-wire pulse count dimming to eliminate the switch noise. The principle of 1-wire pulse count dimming: the AW9358B has 4 internal DAC circuit, which are used to count the number of rising edges of the EN pin pulse signal to set the LED current(Figure 5 and Table 1).

1-wire pulse dimming adjust the LED current method: when the present current is more than the target current, two corresponding pulse number subtraction can be from the current LED current adjustment to the target current:

$$n = N_{to} - N_{from}.$$

For example, adding 13-9=4 pulses changes the LED current from 10mA (rising edges: 9) to 5mA (rising edges: 13) as shown in Figure 6.

Since the AW9358B is a 16 step linear dimming, one cycle per 16 pulse. For the current less than the target current, the number of pulses needed to increase is calculated by adding the 16 pulse and then the callback method:

$$n = N_{to} + 16 - N_{from}.$$

For example, adding 1+16-9=8 pulses changes the LED current from 10mA (rising edges: 9) to 20mA (rising edges: 1) as shown in Figure 7.

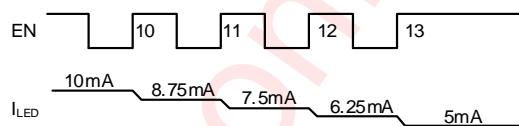


Figure 6 Programming Example for LED Current from 10mA to 5mA

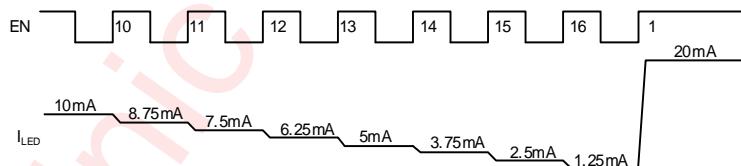
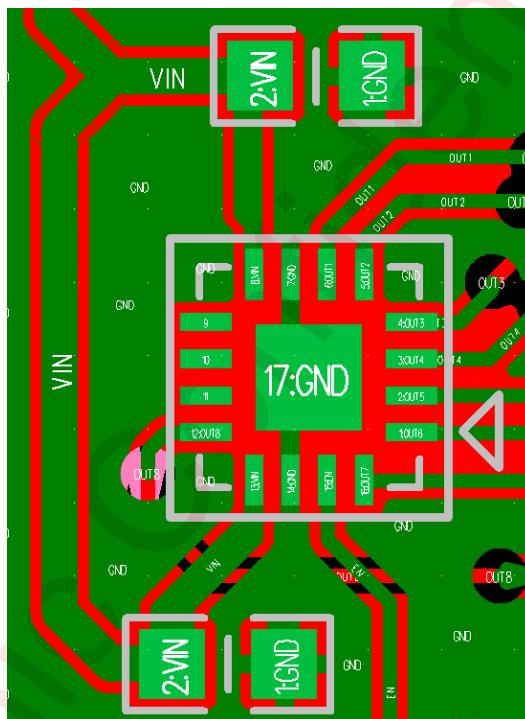


Figure 7 Programming Example for LED Current from 10mA to 20mA

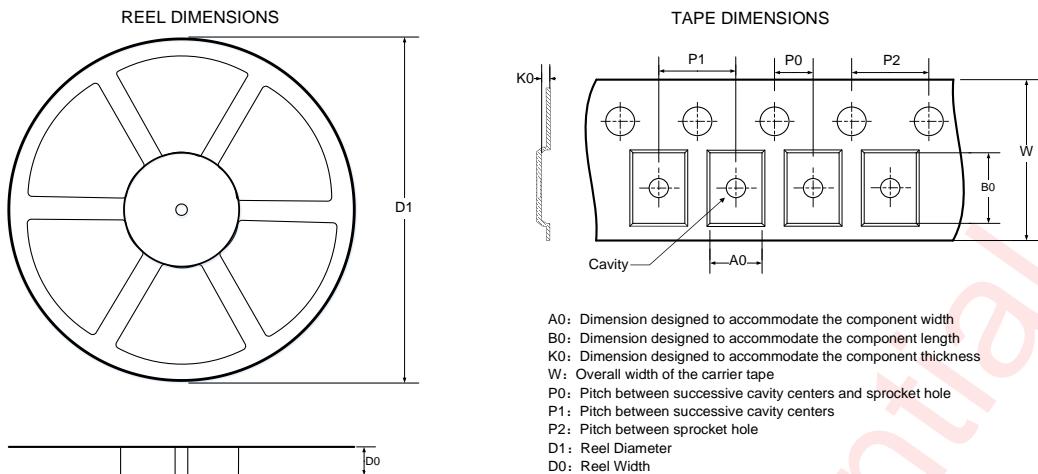
Efficiency

The AW9358B is a parallel white LED driver with ultra low dropout constant-current source. Based on the 20mA current of each LED, the AW9358B only need 50mV (typical) dropout voltage at least. Compared with other LED driver device, higher efficiency is obtained.

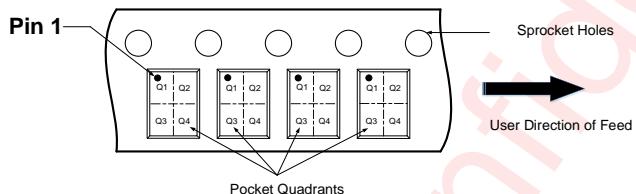
The system efficiency, defined as the ratio between the LED's power and the input power can be calculated simply as the following:


$$\eta = \frac{P_{OUT}}{P_{IN}} = \frac{V_F * I_{OUT}}{V_{IN} * I_{IN}} \approx \frac{V_F * I_{OUT}}{V_{IN} * I_{OUT}} = \frac{V_F}{V_{IN}}$$

Where V_F is the LED forward voltage, $V_{IN} = V_F + V_{DO}$, V_{DO} is the dropout voltage needed in the current source. For example, when $V_{DO}=3.2V$ (20mA) $V_{IN}=3.4V$, the η is about 94%, greater than other type of LED driver.

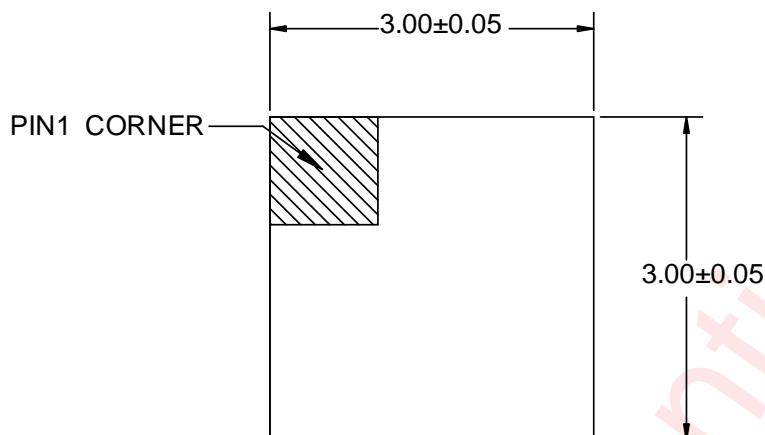

PCB Layout Consideration

The AW9358B is a parallel white LED driver with ultra low dropout constant-current source. The following guidelines should be strictly followed for the layout of the AW9358B:

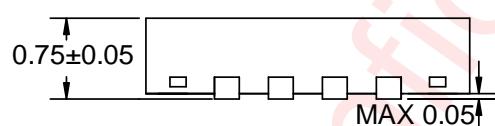

1. Place all peripheral components as close to the device as possible. Place C_{IN} close to the VIN and GND.
2. The power line contact VIN and LED anode must wide, to reduce the influence of parasitic inductance and parasitic resistance.
3. Input capacitor C_{IN} need to near pin 8 and pin 13 of AW9358B, At the same time, the line between the IC corresponding pins and capacitor pad as wide as possible, to reduce noise and EMI interference.
4. In order to obtain a better thermal performance and noise performance, the chip thermal pad and GND must be connected directly to the PCB of the large area spread formation, and in the thermal pad below the floor layer through the through hole connected to the PCB of the middle layer of ground.

Tape And Reel Information

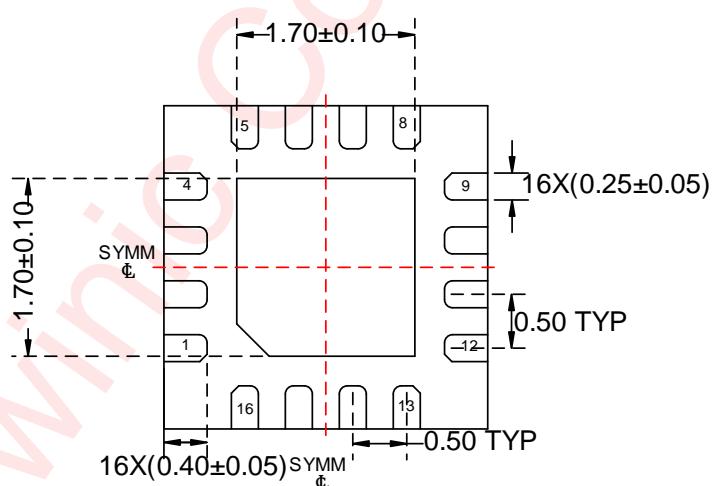
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Note: The above picture is for reference only. Please refer to the value in the table below for the actual size

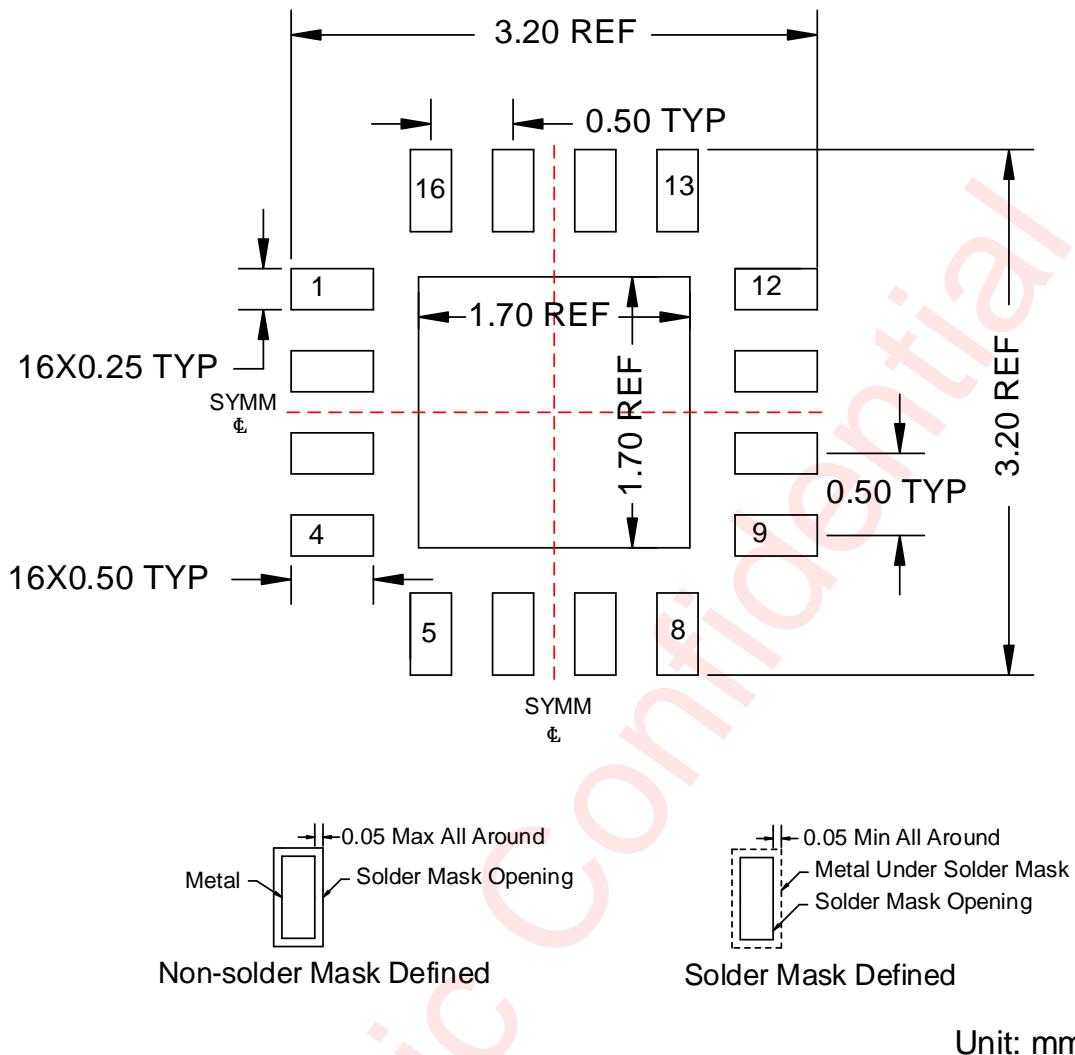
DIMENSIONS AND PIN1 ORIENTATION


D1 (mm)	D0 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
330	12.4	3.3	3.3	1.1	2	8	4	12	Q1

All dimensions are nominal


Package Description

TOP VIEW


SIDE VIEW

BOTTOM VIEW

Unit: mm

Land Pattern

Revision History

Date	Vision	Description
Dec. 2021	V1.0	Officially released.

awinic Confidential

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.