
#include "SPI.h"
#include "USART_SendString.h"

/*
Definition: SPI1初始化配置模块
*/
void SPI_Hardware_Init(SPI_InitType SPI_InitStructure){

RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_SPI1, ENABLE);

//定义CS片选引脚(GPIOA Pin_4)
GPIO_InitType GPIO_InitStructure;
GPIO_InitStructure.Pin = GPIO_PIN_4;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure);
//定义MOSI和CLK
GPIO_InitStructure.Pin = GPIO_PIN_5 | GPIO_PIN_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure);
//定义MISO
GPIO_InitStructure.Pin = GPIO_PIN_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure);

//初始化SPI1
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_256;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_FIRST_EDGE;
SPI_InitStructure.CLKPOL = SPI_CLKPOL_LOW;
//定义全双工
SPI_InitStructure.DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX;
//这里先定义 DataLen = 8 供发送CMD使用,后续发送数据的时候可能要调整为 DataLen = 16
SPI_InitStructure.DataLen = SPI_DATA_SIZE_8BITS;
SPI_InitStructure.FirstBit = SPI_FB_MSB;
//定义软件CS(片选)
SPI_InitStructure.NSS = SPI_NSS_SOFT;
SPI_InitStructure.SpiMode = SPI_MODE_MASTER;
SPI_Init(SPI1, &SPI_InitStructure);

SPI_Enable(SPI1, ENABLE);
//拉高SC信号使失能从机选择
Disable_CS();

}

/*
Definition: 脉冲发送模块
Description: 发送连续80个时钟脉冲,用以上电复位
*/
void SPI_Hardware_SendPulse(void){

Disable_CS();
for(uint8_t i = 0; i < 10; i++){

//向SD卡发送无效位0xFF
while(SPI_I2S_GetStatus(SPI1,SPI_I2S_TE_FLAG) == RESET);
SPI_I2S_TransmitData(SPI1, DUMMY_BIT);

}
}

/*
Definition: (8.22补充机制)用以在发送CMD55初始化指令后面补充1个0xFF脉冲的模块
Description: 所有的脉冲都将在指令发送/接收完成后拉高CS电平后发送
*/
void SPI_Hardware_SendSinglePulse(void){

while(SPI_I2S_GetStatus(SPI1,SPI_I2S_TE_FLAG) == RESET);
SPI_I2S_TransmitData(SPI1, DUMMY_BIT);

}

/*
Definition: 发送/接收单个字节的模块(初始化用,只发送状态下不考虑返回的参数值,只接收发送Dummy Bit)
*/
uint8_t SPI_Hardware_SendGetByte(uint8_t Send_Data){

//发送DUMMYBIT,诱发时钟
while(SPI_I2S_GetStatus(SPI1,SPI_I2S_TE_FLAG) == RESET);
SPI_I2S_TransmitData(SPI1, Send_Data);

//接收Byte
while(SPI_I2S_GetStatus(SPI1, SPI_I2S_RNE_FLAG) == RESET);
uint8_t Byte = SPI_I2S_ReceiveData(SPI1);

return Byte;
}

/*
Definition: 发送初始化CMD的模块
*/
void SPI_Hardware_SendInitCMD(uint8_t CMD, uint32_t Coefficient, uint8_t CMD_CRC){

//将参数写入到Datas数组等待发送
uint8_t Datas[6];
Datas[0] = CMD;
Datas[1] = Coefficient >> 24;
Datas[2] = Coefficient >> 16;
Datas[3] = Coefficient >> 8;
Datas[4] = Coefficient;
Datas[5] = CMD_CRC;
Send_VarString("Address in SendInitCMD: %x %x %x %x\r\n", Datas[1], Datas[2], Datas[3],

Datas[4]);

//拉低CS电平,开启通信
Enable_CS();
//发送数组
uint8_t Index = 0;
// 固定发送6字节CMD帧
for(Index = 0; Index < 6; Index++){ // 6字节：opcode(1)+参数(4)+CRC(1)

SPI_Hardware_SendGetByte(Datas[Index]);
}

}

/*
Definition: 发送CMD24的模块
Notice: (8.27 更新:)在接收正确响应之后发送0xFF, 0xFE和后续512个字节
 返回类型:参数值(写入是否正常)
*/
uint8_t SPI_Hardware_SendSectorData(uint8_t* Datas){

uint8_t R1_React = SD_WriteData_Failed;
//发送数据头
SPI_Hardware_SendGetByte(Single_Block_Read_Token);
//
for(uint16_t i = 0; i < Sector_Length; i++){

Send_VarString("Sector data = %d, \r\n", Datas[i]);
SPI_Hardware_SendGetByte(Datas[i]);

}
//不接收CRC校验位
SPI_Hardware_SendGetByte(DUMMY_BIT);
SPI_Hardware_SendGetByte(DUMMY_BIT);
//判断数值校验位
uint8_t Data_React = SPI_Hardware_SendGetByte(DUMMY_BIT);
//数据响应类型

 if((Data_React & 0x1F) == SD_DATA_OK)
 R1_React = SD_WriteData_Success;

Send_VarString("Data reaction = %x\r\n", Data_React);

//8.29新增: 添加BUSY校验
uint8_t Is_Busy = 0x00;
do{

Is_Busy = SPI_Hardware_SendGetByte(DUMMY_BIT);
}while(Is_Busy != 0xFF);

//拉高CS引脚并发送脉冲
Disable_CS();
SPI_Hardware_SendSinglePulse();
return R1_React;

}

/*
Definition: 处理长接收内容的模块
Description: 接受的长度由定义的内容而定
*/
void SPI_Hardware_GetLongReply(uint8_t* Datas, uint8_t Start_Flag, uint8_t CMD){

uint16_t Returned_Datas = 0;
uint16_t Index_Coefficient = 0;
uint8_t Temp_Data = 0;
uint8_t Enable_Read = 0;

//基于CMD给出长度
uint16_t Length;
if(CMD == CMD24)

Length = Total_Sector_Length;
else

Length = Total_CID_CSD_Length;

//判断是否结束
while(Returned_Datas != (Length)){

//连续读取数值
Temp_Data = SPI_Hardware_SendGetByte(DUMMY_BIT);
Send_VarString("Temp_Data = %x\r\n", Temp_Data);
//判断是否检测到Token
if(Temp_Data == Start_Flag)

Enable_Read = 1;
else{

if(Enable_Read == 1){
Index_Coefficient++;
Returned_Datas++;
Datas[Index_Coefficient] = Temp_Data;

}
}

}
Send_VarString("Send Complete\r\n");

}

/*
Definition: 接收指令参数的模块,返回状态或者参数,经由指针传递数组数据
Description: 依照输入的指令返回指定参数
CMD0: R1响应,仅返回单个Byte
CMD8(R3), CMD58(R7): 返回单个Byte和32位状态位(回声)
CMD9, CMD10: 返回R1和20个字节的CID/CSD参数(含Token,16位CID/CSD,CRC16和CRC7)
*/
void SPI_Hardware_GetInitData(uint8_t CMD_Command, uint8_t *Datas_In, uint8_t* Datas_Out){

uint8_t Returned_Datas = 0;
uint8_t Temp_Data = 0;
uint8_t Index_Coefficient = 0;

//超时机制
uint16_t Timeout = 10000;

//循环检测,直至获取有效的R1响应
while(1){
 Temp_Data = SPI_Hardware_SendGetByte(DUMMY_BIT);

Send_VarString("Temp data in GetInitData = %d\r\n", Temp_Data);

if(!(Temp_Data & 0x80)){
 Datas_In[Index_Coefficient] = Temp_Data;

Send_VarString("Index %d, Get Init Data: R1 = %x\r\n", Index_Coefficient,
Datas_In[Index_Coefficient]);

break;
}
else{

--Timeout;
if(!Timeout)

break;
}

}
//判断超时或者无效指令
if(Datas_In[Index_Coefficient] != Card_Ready && Datas_In[Index_Coefficient] !=

In_Idle_State){
Send_VarString("The command encounters an error \r\n");
Send_VarString("Error Type: %x \r\n", *Datas_In);

}
else if(!(Timeout)){

Send_VarString("Time exceeded \r\n");
Datas_In[Index_Coefficient] = Invalid;

}
else{

while(1){
//包括初始化,设置扇区,ACMD41配套
if(CMD_Command == CMD0 || CMD_Command == CMD16|| CMD_Command == CMD55 ||

CMD_Command == ACMD41){
break;

}
//写入扇区
else if(CMD_Command == CMD24){

uint8_t Get_WriteStatus = SPI_Hardware_SendSectorData(Datas_In);
if(Get_WriteStatus == SD_WriteData_Success)

Send_VarString("Data has been delivered successfully\r\n");
else

Send_VarString("The system encountered an error in writing
data\r\n");

break;
}
//特殊数值
else if (CMD_Command == CMD8 || CMD_Command == CMD58){

if(Returned_Datas == 5){
SPI_Hardware_SendGetByte(DUMMY_BIT);
break;

}
else{

Index_Coefficient++;
Datas_In[Index_Coefficient] =

SPI_Hardware_SendGetByte(DUMMY_BIT);
Returned_Datas++;

}
}
//CID/CSD/读取扇区
else if(CMD_Command == CMD9 || CMD_Command == CMD10 || CMD_Command == CMD17)

{
SPI_Hardware_GetLongReply(Datas_In, Single_Block_Read_Token,

CMD_Command);
break;

}
//无其他指令,退出
else

break;
}

}
//拉高CS电平,关闭通信
if(CMD_Command != CMD55){

Disable_CS();
}
SPI_Hardware_SendSinglePulse();

}

/*
Description: 专供CMD55->ACMD41流程的读写函数
*/
uint8_t SPI_Hardware_SendACMD(uint8_t SD_Card_Type){

uint8_t CMD55_R1_Reaction;
uint8_t ACMD41_R1_Reaction = 0x80;
/*将ACMD41_R1_Reaction设置为0x80,除非正常输出否则输出失败标志位*/
/*发送CMD55*/
SPI_Hardware_SendInitCMD(CMD55, CMD55_Index, OTHER_CSC);
SPI_Hardware_GetInitData(CMD55, &CMD55_R1_Reaction, NULL);
if(CMD55_R1_Reaction != In_Idle_State){

return Invalid;
}
else{

if(SD_Card_Type == 1){
SPI_Hardware_SendInitCMD(ACMD41, ACMD41_Index_H, OTHER_CSC);
SPI_Hardware_GetInitData(ACMD41, &ACMD41_R1_Reaction, NULL);

}
else{

SPI_Hardware_SendInitCMD(ACMD41, ACMD41_Index_L, OTHER_CSC);
SPI_Hardware_GetInitData(ACMD41, &ACMD41_R1_Reaction, NULL);

}
}
Send_VarString("%d\r\n",ACMD41_R1_Reaction);
return ACMD41_R1_Reaction;

}

/*
Description: 用以实现CMD指令的输出
*/
void SPI_Hardware_SendCMD(uint8_t CMD, uint32_t Coefficient, uint8_t CMD_CRC, uint8_t *Datas_OUT,
uint8_t* Datas_IN){

//读取指令
SPI_Hardware_SendInitCMD(CMD, Coefficient, CMD_CRC);
//发送参数
SPI_Hardware_GetInitData(CMD, Datas_OUT, Datas_IN);

}

