#include ”“SPI.h”
#include “USART SendString.h”

/%

Definition: SPI1HI4Ath it B L EL

*/

void SPI Hardware Init(SPI InitType SPI InitStructure) {
RCC _EnableAPB2PeriphClk (RCC_APB2 PERIPH GPIOA, ENABLE) ;
RCC EnableAPB2PeriphClk (RCC APB2 PERIPH SPI1, ENABLE) ;

// 7€ XCS vk 5] 1 (GPTOA Pin 4)

GPIO InitType GPIO InitStructure;

GPIO InitStructure.Pin = GPIO PIN 4;

GPIO InitStructure.GPIO Speed = GPIO Speed 50MHz;
GPIO InitStructure.GPIO Mode = GPIO Mode Out PP;
GPIO InitPeripheral (GPIOA, &GPIO InitStructure);
/ /5 XMOSTAICLK

GPIO InitStructure.Pin = GPIO PIN 5 | GPIO PIN 7;
GPIO InitStructure.GPIO Mode = GPIO Mode AF PP;
GPIO InitPeripheral (GPIOA, &GPIO InitStructure);
// %€ XMISO

GPIO InitStructure.Pin = GPIO PIN 6;

GPIO InitStructure.GPIO Mode = GPIO Mode IPU;
GPIO InitPeripheral (GPIOA, &GPIO InitStructure);

//WIHEASPTL

SPI InitStructure.BaudRatePres = SPI BR PRESCALER 256;

SPI InitStructure. CLKPHA = SPI CLKPHA FIRST EDGE;

SPI InitStructure. CLKPOL = SPI CLKPOL LOW;

/1 AR

SPI InitStructure.DataDirection = SPI DIR DOUBLELINE FULLDUPLEX;
[/ B E L DataLen = 8 fH&IACMDAE F, J& 2 A& 3% B i i i) e 22 %y Datalen = 16
SPI InitStructure.Datalen = SPI DATA SIZE 8BITS;

SPI InitStructure.FirstBit = SPI FB MSB;

/ /58 A CS (Jr k)

SPI InitStructure.NSS = SPI NSS SOFT;

SPI InitStructure. SpiMode = SPI MODE MASTER;

SPI Init(SPI1, &SPI InitStructure);

SPI Enable(SPI1, ENABLE);
/ /35 155 SCAE 5 4 2K BE MBI $%
Disable CS();

/%
Definition: JkH /R IEH
Description: KIZEZEZSOAH & kaf, L LB EAL
*/
void SPI Hardware SendPulse(void) {
Disable CS();
for(uint8 t i = 0; i < 10; i++){
// 1A SDR & 3% 6 AL OXFF
while (SPI 12S GetStatus(SPI1, SPI 12S TE FLAG) == RESET);
SPT 125 TransmitData(SPT1, DUMMY BIT):

/%
Definition: (8. 22%hFE ML) I LAFE & 3% CMD55 4 46 Ak 4 4 J Th #h 78 14 Ox P ik vft f) A
Description: BT [ki #0875 5 2 ik /#2 US 5€ i 5 B = CS L Ji5 Ak i%
*/
void SPI Hardware SendSinglePulse(void) {
while (SPI 12S GetStatus(SPI1, SPI I2S TE FLAG) == RESET);
SPI I12S TransmitData(SPI1, DUMMY BIT);

/%
Definition: RIE/BWCEA A R (FIE A, R RERE FAHZER B WS HE, AW R ZEDummy Bit)
*/
uint8 t SPI Hardware SendGetByte(uint8 t Send Data) {
// % i%DUMMYBIT, i & I} 4
while (SPI_12S GetStatus(SPI1, SPI I2S TE FLAG) == RESET);
SPI_12S TransmitData(SPI1, Send Data);

/ /¥ Byte
while (SPI I2S GetStatus(SPI1, SPI I2S RNE FLAG) == RESET);
uint8 t Byte = SPI I2S ReceiveData(SPI1);

return Byte;

/%
Definition: 35) UE 1E CMD f A B
*/
void SPI Hardware SendInitCMD(uint8 t CMD, uint32 t Coefficient, uint8 t CMD _CRC) {
/ /KBS N B|Datas B H &5 15 K ik
uint8 t Datas[6];
Datas[0] = CMD;
Datas[1] = Coefficient >> 24;
Datas[2] = Coefficient >> 16;
Datas[3] = Coefficient >> §;
Datas[4] Coefficient;
Datas[5] = CMD_CRC;
Send VarString (“Address in SendInitCMD: %x %x %x %x\r\n”, Datas[1], Datas[2], Datas[3],
Datas[4]) ;

//FARCS A, 5 il fE

Enable CS();

//RIERA

uint8 t Index = 0;

// [l 5E 3% 6775 CMD i

for (Index = 0; Index < 6; Index++){ // 6FFi: opcode(1)+Z % (4)+CRC(1)
SPI_Hardware SendGetByte (Datas[Index]) ;

1

/%

Definition: 9% 3% CMD 24 [A5

Notice: (8.27 TEHr:) MW IERIM N 2 f5 K 1% 0xFF, OxFEMIfF 82512477
BRER - ZHE(BEALEFIER)

*/

uint8 t SPI Hardware SendSectorData(uint8 t* Datas) {
uint8 t R1 React = SD WriteData Failed;
/ /R IE AR 3k
SPI Hardware SendGetByte(Single Block Read Token) ;
//
for(uintl6_t i = 0; i < Sector Length; i++) {
Send VarString (“Sector data = %d, \r\n”, Datas[i]);
SPI Hardware SendGetByte(Datas[i]);
}
/ /AN W CROAS 563 7
SPI Hardware SendGetByte (DUMMY BIT) ;
SPI Hardware SendGetByte (DUMMY BIT) ;
/ /) W BB AR 56 A
uint8 t Data React = SPI Hardware SendGetByte (DUMMY BIT) ;
/ /B e 82 Y
if ((Data React & 0x1F) == SD DATA OK)
R1 React = SD WriteData Success;

Send VarString(“Data reaction = %x\r\n”, Data React);

//8. 2914 . S IBUSYAZ 56
uint8 t Is Busy = 0x00;
do{
Is Busy = SPI Hardware SendGetByte (DUMMY BIT) ;
}while(Is Busy != OxFF);

/ /35 iR CS G| I A 3k ik v

Disable CS();

SPI _Hardware SendSinglePulse();
return R1 React;

/%
Definition: Ab B K 2 B P 2R A A B
Description: #E521HKE H 2 LI W &M E
*/
void SPI Hardware GetLongReply(uint8 t* Datas, uint8 t Start Flag, uint8 t CMD) {
uintl6 t Returned Datas = 0;
uintl6 t Index Coefficient = 0;
uint8 t Temp Data = O0;
uint8 t Enable Read = 0;

// T OMDEE H K
uintl6 t Length;
if (CMD == CMD24)
Length = Total Sector Length;

else

Length = Total CID CSD Length;
//H W2 7 4
while (Returned Datas != (Length)) {

/ /& B3 BB
Temp Data = SPI Hardware SendGetByte (DUMMY BIT) ;
Send VarString (“Temp Data = %x\r\n”, Temp Data);
//F W A& A A I B Token
if (Temp Data == Start Flag)
Enable Read = 1;
else{
if (Enable Read == 1) {
Index Coefficient++;
Returned Datas++;
Datas[Index Coefficient] = Temp Data;

}
}
Send VarString (”Send Complete\r\n”) ;
1

/%
Definition: PR A S H R, IR DR A B 240, 48t fe B A% 0k B HoiE
Description: e PN E RS EY I Ei=D=E %4
CMDO: R1MA 8L, 4% & [#>By te
CMD8 (R3), CMD58(R7) : iR [H] i A>ByteFl 32AL AR ZS AL (18] 75)
CMD9, CMD10: 3R [AIR1A1204 %5 [)CID/CSDS # (4 Token, 1642CID/CSD, CRC16F1CRCT)
*/
void SPI Hardware GetInitData(uint8 t CMD Command, uint8 t #*Datas In, uint8 t* Datas Out) {
uint8 t Returned Datas = 0;
uint8 t Temp Data = O0;
uint8 t Index Coefficient = O0;

/ /R AL]
uintl6_t Timeout = 10000;

//UE IR, B2 SR AL R B
while (1) {
Temp Data = SPI Hardware SendGetByte (DUMMY BIT) ;
Send VarString ("Temp data in GetInitData = %d\r\n”, Temp Data);

if (! (Temp Data & 0x80)) {
Datas In[Index Coefficient] = Temp Data;
Send VarString(“Index %d, Get Init Data: R1 = %x\r\n”, Index Coefficient,
Datas In[Index Coefficient]);
break;
}

elsef
——Timeout;
if (!Timeout)
break;

}

}
/ /) Wi i e B T Rk R 4
if (Datas In[Index Coefficient] != Card Ready && Datas In[Index Coefficient] !=
In_Idle State) {
Send VarString (“The command encounters an error \r\n”);
Send VarString ("Error Type: %x \r\n”, *Datas In);
}
else if (! (Timeout)) {
Send VarString ("Time exceeded \r\n”);
Datas In[Index Coefficient] = Invalid;
}
elsef
while (1) {
//BAEYIIEA, BB B X, ACMD4 1AL &
if (CMD Command == CMDO || CMD Command == CMD16/|| CMD Command == CMD55 ||
CMD Command == ACMD41) {
break;
}
/) BN X
else if(CMD_Command == CMD24) {
uint8 t Get WriteStatus = SPI Hardware SendSectorData(Datas In);
if(Get WriteStatus == SD_WriteData_ Success)
Send VarString(“Data has been delivered successfully\r\n”);
else
Send VarString ("The system encountered an error in writing
data\r\n”) :
break;
}
/ /R BUE
else if (CMD Command == CMD8 || CMD Command == CMD58) {
if (Returned Datas == 5) {
SPI Hardware SendGetByte (DUMMY BIT) ;
break;
}
elsef
Index Coefficient++;
Datas In[Index Coefficient] =
SPI Hardware SendGetByte (DUMMY BIT) ;

}
}
//CID/CSD/5 B & X
else if(CMD Command == CMD9 || CMD Command == CMD10 || CMD Command == CMD17)

Returned Datas++;

{

CMD_Command) ;

SPI_Hardware GetLongReply(Datas In, Single Block Read Token,

break;
}
//EFHARYE 4, B H
else

break;

}

}

// LR CSHLF, ¢ P AE

if (CMD Command != CMD55) {
Disable CS();

}

SPI Hardware SendSinglePulse();

/%

Description: & ftCMD55->ACMD4 17 FE B 1525 pf £

*/

uint8 t SPI Hardware SendACMD (uint8 t SD_Card Type) {
uint8 t CMD55 R1 Reaction;
uint8 t ACMD41 R1 Reaction = 0x80;
/*$$ACMD41_R1_ReactioniBf B Jy0x80, [I I fi i 75 W i t 2% WO 26 i/
/%5 3% CMD5 5%/
SPI Hardware SendInitCMD(CMD55, CMD55 Index, OTHER CSC);
SPI Hardware GetInitData(CMD55, &CMD55 R1 Reaction, NULL);
if (CMD55 R1 Reaction != In Idle State) {

return Invalid;

}

else{
if(SD_Card Type == 1) {
SPI Hardware SendInitCMD(ACMD41, ACMD41 Index H, OTHER CSC) :
SPI Hardware GetInitData(ACMD41, &ACMD41 R1 Reaction, NULL)
}
else{
SPI_Hardware SendInitCMD(ACMD41, ACMD41 Index L, OTHER _CSC);
SPI _Hardware GetInitData(ACMD41, &ACMD41 R1 Reaction, NULL);
1
}
Send VarString ("%d\r\n”, ACMD41 R1 Reaction)
return ACMD41 R1 Reaction;

/%
Description: FH LASZHLCMDIE 2 10 4
*/
void SPI Hardware SendCMD (uint8 t CMD, uint32 t Coefficient, uint8 t CMD CRC, uint8 t *Datas OUT,
uint8 t* Datas IN) {
// AR A
SPI Hardware SendInitCMD(CMD, Coefficient, CMD_CRC);
[/ RiESH
SPI _Hardware GetInitData(CMD, Datas OUT, Datas_IN);

