#include “n32g45x.h” // Device header
#include ”“SPI.h”

#include “USART SendString.h”

tinclude “Delay.h”

tinclude ”SD.h”

// FHE AL memse t BT J& 193k S

#tinclude <string.h>

//3E U I 2 5

/7€ XRFEnZH

uint8 t Card = 0;

/ /%€ R

uint8 t Return RI;

/Z%X~4\i&éﬂﬁ%¥?i&ﬁl (12 #0E (BEERCMD17, CMD184b [4i5 4> Il I 47 i 24k 6 H1) (RT BAA & R1WE B, CRC16, CRCTAL
I8 AT)

uint8 t Return Datall6 + 1 + 2 + 1];

/1R LA HUA A AT 3R 0] XA (R CMD 1745 4> Ml I A7 il 2B A% A) (& R1M B2, CRC16, CRCTH 56 7))
uint8 t Return Single Sector[512 + 1 + 2 + 1];

// % X CMD8IR [F] {3 Fuint32 tZR M S 4,

uint32 t CMD Coefficient;

//%E Xuintl6 t25 7 S HRCA

uintl6_t RCA Coefficient;

//E X FHEFuint16 t FIRCAHE R A7

uintl6 t RCA FlagStatus;

g:finition: HIAHEASD V2. 0% 2 JG R ASD <

:{nt87t SD_V2_0_Init(void);

g:finition: WIUEASD V1.0 K& 2 J5 iR ASD R

i?ntSit SD V1 0 Tnit(void);

{’iogress: 1& BCACMDA 1R A5 & 2% Z2 % (#°A0x40000000, BPbit31 (HCSHL) BEE A1)
*/

/ /05 58 SUSPL4E K Ak

// SR VEAE Ja 825 N BE I X SPT 45 Ky R AT 15 22
SPI InitType SPI InitStructure;

/%

Definition: HIEAEALSDRAELR, R [A 3 Fuint8 tZRA KRS 8 ()5 24 H)

Description: 8/21: 4R FEHE 43 HrSDR M HEAE (BI43HTSDRAN L. x, 2. 0+) AIE R L (b #fEStandard, 152
High Capacity)

Notice: BROAHL D93, 3V, FT A 1A) T AL] T R R R AE 3. 3V A L K /N 10% FE

*/

uint8 t SD Init(void) {

SPI Hardware Init(SPI InitStructure);

/ /R IE TAAS I ik e

SPI _Hardware SendPulse();

Send VarString(“Clock Pulse Delivered\r\n”):

/ /3% CMDO
SPI Hardware SendCMD (CMDO, CMDO Index, CMDO CSC, Return Data, NULL);
if (Return Data[0] != In Idle State)

return Initialize Failed;

//) %CMD8
SPI Hardware SendCMD (CMD8, CMD8 Index, CMD8 CSC, Return Data, NULL)

/)R AW (R1Z 51K H0x01)
/38 SRR
uint8 t Card Type;
if (Return Datal[0] != In _Idle State) {
Send VarString (“This might be SD _V1.X card\r\n”);

Card Type = SD V1 0 Init(Q);

else{

Send VarString(“This might be SD V2.0 card\r\n”);

/ /¥ B) B AE IR [

CMD Coefficient = (Return Data[l] << 24) |
(Return Datal[2] << 16) |
(Return Data[3] << 8) |
(Return Datal4]);

if (CMD _Coefficient != CMD8 Index)

return Invalid Card;

Card Type = SD V2 0 Init();
}
//(8.27 &1 ¥ INCMD16AL i)
/R E AL N5 124 T
uint8 t SD ReadWriteLength;
SPI Hardware SendCMD (CMD16, (uint32 t)Sector Length, OTHER CSC, &SD ReadWriteLength, NULL);
if (SD ReadWriteLength != Card Ready)
return Invalid Card;
return Card Type;

//SD V2. 0¥ 4H 4 AR ES
uint8 t SD V2 0 Init(void) {
Card = 1;

//8. 23 A& 53 K i%ECMD55HATACMD4 1

/ /%435 SD IR HY IDLEAR 2 (G [510x00)

//8/22 M&IF : BB BIEIF K i£ACMDA1 LL$ EXReturn Datal[0] (R1)
//8.23 A& IE TR WL, 221k SDR 7R AN [B HCS i T i3k 4T ¥ 4k 4k
// (SD-RTEHCS & =1 1% L - A RE TC vk Wl aR AL B)

//8.23 fBIE 1B M N do-whilelf

/ /K i%ACMD41

//FI W2 S Y BLERR

uintl6_t Time out = 500;

uint8 t R1;

do {
R1 = SPI Hardware SendACMD (Card) ;
Delay ms(10);

}while((-—Time out) && R1 == 0x01);

if(R1 !'= In Idle State && R1 !'= Card Ready) {
Send VarString ("%d\r\n”, R1);
Send VarString(”Can’t Initialize card \r\n”);
return Initialize Failed;
}
else if(R1 != Card Ready) {
Send VarString ("%d\r\n”, R1);
Send VarString (“Card cannot jump out from the idle state\r\n”);
return Initialize Failed;

}

// R K1 CMD58
SPI Hardware SendCMD(CMD58, CMD58 Index, OTHER CSC, Return Data, NULL);
Send VarString ("%d\r\n”, Return Datal[0]);

if (Return Data[0] != Card Ready)
return Initialize Failed;
elsef{
Send VarString ("CMD58 delivered successfully \r\n”);
CMD Coefficient = (Return Datal[l] << 24) |
(Return Datal[2] << 16) |

(Return Data[3] << 8) |
(Return Datal4]);
if (! (CMD Coefficient & SD V2 0 High Capacity CCS))
return SD Ver2 0 Standard Capacitance;
else
return SD Ver2 0 High Capacitance;

//SD V1. 0¥I4s 4 AR HS
uint8 t SD V1 0 Init(void) {

uintl6 t Time out = 500;
/ /% #5 SDRE H IDLEIR 2 (& [#10x00)
do{
SPI _Hardware SendACMD (Card) ;
Delay ms(10) ;
}while ((-—Time out) && (Return Datal[0] == 0x01));

// P HoAth A7 2 S e E
if ((Return Datal[0] & OxFF) != 0x00)

return Initialize Failed;

return SD Verl x Standard Capacitance;

/%

Definition: SD-RZRHLCID/CSDAE B, 3R MR 2 (18 e 452 0)
Description:

*/

uint8 t SD GetCSD(uint8 t* CSD Coefficients) {
// K i%CMD9, 3R ELCSDZ %
SPI Hardware SendCMD (CMD9, 0x00000000, OTHER CSC, CSD Coefficients, NULL):
Send VarString ("Get CSD finished\r\n”);
if (CSD Coefficients[0] !'= Card Ready)
return Get CIDCSD Failed;

return Get CIDCSD Success;
}

uint8 t SD GetCID(uint8 t* CID Coefficients) {
// K i%ECMD10, 3R HLCIDZ %
SPI Hardware SendCMD(CMD10, 0x00000000, OTHER CSC, CID Coefficients, NULL);
if (CID Coefficients[0] != Card Ready)
return Get CIDCSD Failed;

return Get CIDCSD Success;

/%

Definition: MSDF Fi 5 o B 5 HC— A i X B
Description:

*/

uint8 t SD GetData(uint8 t* Sector Data, uint32 t Address) {
//iE T Return Single Sectorfg4t
memset (Sector Data, 0x00, Total Sector Length);
// R IECMDL7, SRELFE & N A7 K/ (SC) Bl di & B X 1951275 (HC, XC) [=4
SPI Hardware SendCMD(CMD17, Address, OTHER CSC, Sector Data, NULL);
if(Sector Data[0] != Card Ready)
return Get Sector Failed;

return Get Sector Success;

/%

Definition: HESDR R E A BB AS12575 1) B4

Description:

*/

uint8 t SD WriteData(uint8 t* Data In, uint32 t Address) {
// R IECMD24, SRELFE & N A7 K/ (SC) B di i B X 1951275 (HC, XC) [244
SPI_Hardware SendCMD (CMD24, Address, OTHER CSC, &Return R1, Data_In);
if (Return R1 != Card Ready)

return Write Sector Success;

return Write Sector Failed;

