

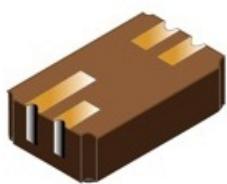
NPN LOW POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/368

Qualified Levels:
JAN, JANTX,
JANTXV and JANS

DESCRIPTION

This family of 2N3439UA through 2N3440UA high-frequency, epitaxial planar transistors feature low saturation voltage. The UA package is hermetically sealed and provides a low profile for minimizing board height. These devices are also available in U4, TO-5 and TO-39 packaging. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.


Important: For the latest information, visit our website <http://www.microsemi.com>.

FEATURES

- JEDEC registered 2N3439UA through 2N3440UA series.
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/368.
- RoHS compliant by design.
- $V_{CE(sat)} = 0.5$ V @ $I_C = 50$ mA.
- Turn-On time $t_{on} = 1.0$ μ s max @ $I_C = 20$ mA, $I_{B1} = 2.0$ mA.
- Turn-Off time $t_{off} = 10$ μ s max @ $I_C = 20$ mA, $I_{B1} = -I_{B2} = 2.0$ mA.

APPLICATIONS / BENEFITS

- General purpose transistors for medium power applications requiring high frequency switching and low package profile.
- Military and other high-reliability applications.

UA Package

Also available in:

U4 package
(surface mount)
 [2N3439U4 – 2N3440U4](#)

TO-5 package
(long leaded)
 [2N3439L – 2N3440L](#)

TO-39 package
(leaded)
 [2N3439 – 2N3440](#)

MAXIMUM RATINGS ($T_C = +25^\circ\text{C}$ unless otherwise noted)

Parameters / Test Conditions	Symbol	2N3439UA	2N3440UA	Unit
Collector-Emitter Voltage	V_{CEO}	350	250	V
Collector-Base Voltage	V_{CBO}	450	300	V
Emitter-Base Voltage	V_{EBO}	7.0		V
Collector Current	I_C	1.0		A
Total Power Dissipation @ $T_A = +25^\circ\text{C}$ ⁽¹⁾ @ $T_C = +25^\circ\text{C}$ ⁽²⁾ UA @ $T_{SP} = +25^\circ\text{C}$ ⁽³⁾	P_D	0.8 5.0 2.0	W	
Operating & Storage Junction Temperature Range	T_J, T_{stg}	-65 to +200		°C

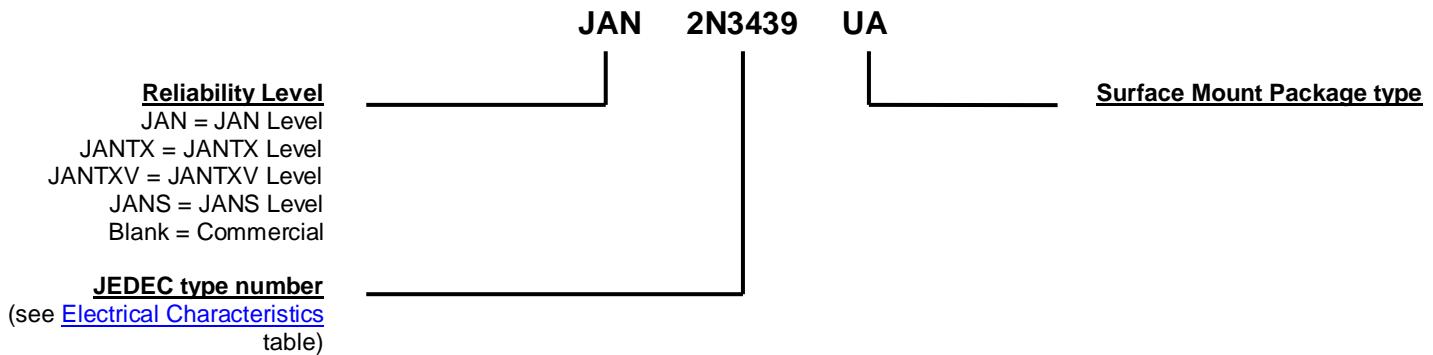
Notes:

1. Derate linearly @ 4.57 mW/°C for $T_A > +25^\circ\text{C}$.
2. Derate linearly @ 28.5 mW/°C for $T_C > +25^\circ\text{C}$.
3. Derate linearly @ 14 mW/°C for $T_{SP} > +25^\circ\text{C}$.

MSC – Lawrence

6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600
Fax: (978) 689-0803

MSC – Ireland


Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed ceramic package.
- TERMINALS: Gold plate over nickel.
- MARKING: Manufacturer's ID, date code, part number.
- POLARITY: NPN (see package outline).
- TAPE & REEL option: Per EIA-481. Consult factory for quantities.
- WEIGHT: 0.12 grams.
- See [Package Dimensions](#) on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS

Symbol	Definition
C_{ibo}	Common-base open-circuit input capacitance.
C_{obo}	Common-base open-circuit output capacitance.
I_{CEO}	Collector cutoff current, base open.
I_{CEX}	Collector cutoff current, circuit between base and emitter.
I_{EBO}	Emitter cutoff current, collector open.
h_{FE}	Common-emitter static forward current transfer ratio.
V_{BE}	Base-emitter voltage, dc.
V_{CE}	Collector-emitter voltage, dc.
V_{CEO}	Collector-emitter voltage, base open.
V_{CBO}	Collector-emitter voltage, emitter open.
V_{EB}	Emitter-base voltage, dc.
V_{EBO}	Emitter-base voltage, collector open.

ELECTRICAL CHARACTERISTICS (T_A = +25°C, unless otherwise noted)
OFF CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Collector-Emitter Breakdown Voltage I _C = 10 mA R _{BB1} = 470 Ω; V _{BB1} = 6 V L = 25 mH (min); f = 30 – 60 Hz	V _{(BR)CEO}	350 250		V
Collector-Emitter Cutoff Current V _{CE} = 300 V V _{CE} = 200 V	I _{CEO}		2.0 2.0	μA
Emitter-Base Cutoff Current V _{EB} = 7.0 V	I _{EBO}		10	μA
Collector-Emitter Cutoff Current V _{CE} = 450 V, V _{BE} = -1.5 V V _{CE} = 300 V, V _{BE} = -1.5 V	I _{CEX}		5.0 5.0	μA
Collector-Base Cutoff Current V _{CB} = 360 V V _{CB} = 250 V V _{CB} = 450 V V _{CB} = 300 V	I _{CBO}		2.0 2.0 5.0 5.0	μA

ON CHARACTERISTICS ⁽¹⁾

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio I _C = 20 mA, V _{CE} = 10 V I _C = 2.0 mA, V _{CE} = 10 V I _C = 0.2 mA, V _{CE} = 10 V	h _{FE}	40 30 10	160	
Collector-Emitter Saturation Voltage I _C = 50 mA, I _B = 4.0 mA	V _{CE(sat)}		0.5	V
Base-Emitter Saturation Voltage I _C = 50 mA, I _B = 4.0 mA	V _{BE(sat)}		1.3	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio I _C = 10 mA, V _{CE} = 10 V, f = 5.0 MHz	h _{fe}	3.0	15	
Forward Current Transfer Ratio I _C = 5.0 mA, V _{CE} = 10 V, f = 1.0 kHz	h _{fe}	25		
Output Capacitance V _{CB} = 10 V, I _E = 0, 100 kHz ≤ f ≤ 1.0 MHz	C _{obo}		10	pF
Input Capacitance V _{CB} = 5.0 V, I _E = 0, 100 kHz ≤ f ≤ 1.0 MHz	C _{ibo}		75	pF

(1) Pulse Test: Pulse Width = 300 μs, duty cycle ≤ 2.0%.

ELECTRICAL CHARACTERISTICS (T_A = +25°C, unless otherwise noted) continued
SWITCHING CHARACTERISTICS

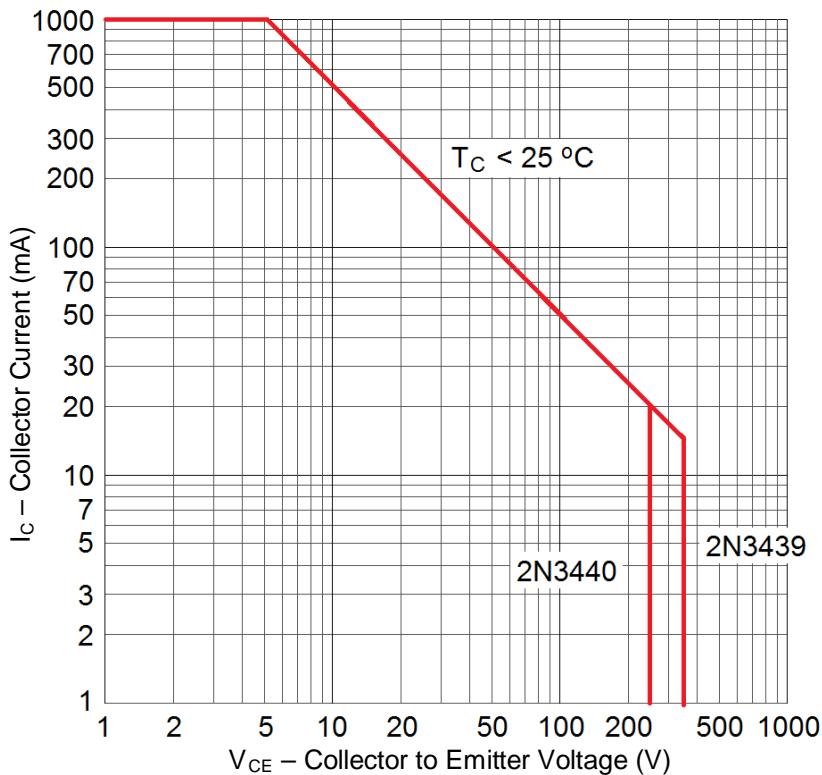
Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time V _{CC} = 200 V; I _C = 20 mA, I _{B1} = 2.0 mA	t _{on}		1.0	μs
Turn-Off Time V _{CC} = 200 V; I _C = 20 mA, I _{B1} = -I _{B2} = 2.0 mA	t _{off}		10	μs

SAFE OPERATING AREA (See graph below and also reference test method 3053 of [MIL-STD-750](#).)

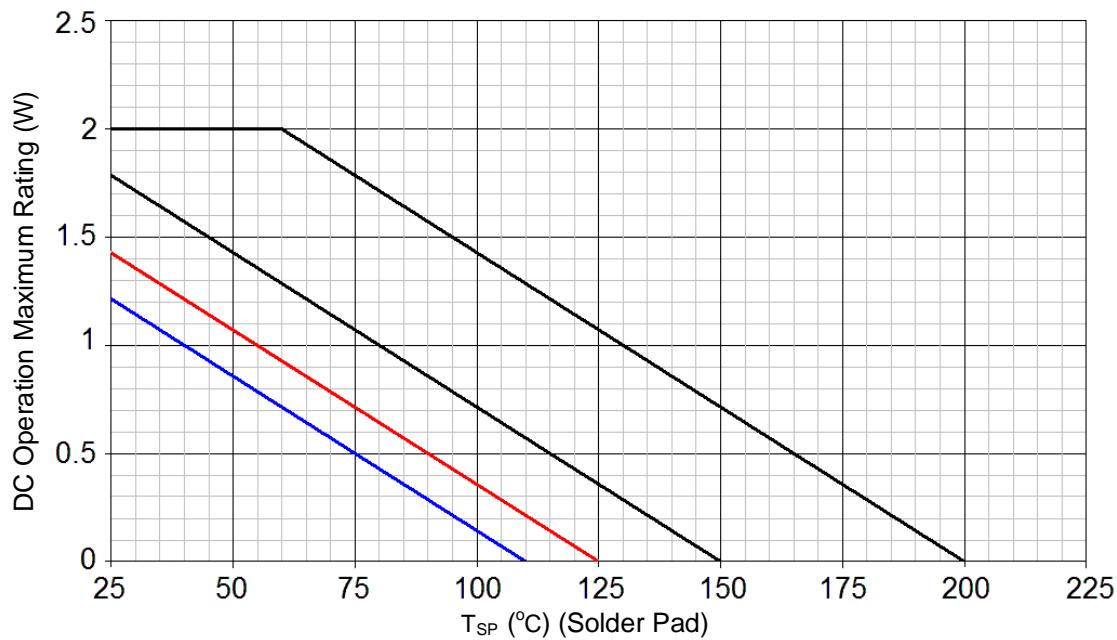
DC Tests

T_C = +25 °C, 1 Cycle, t = 1.0 s

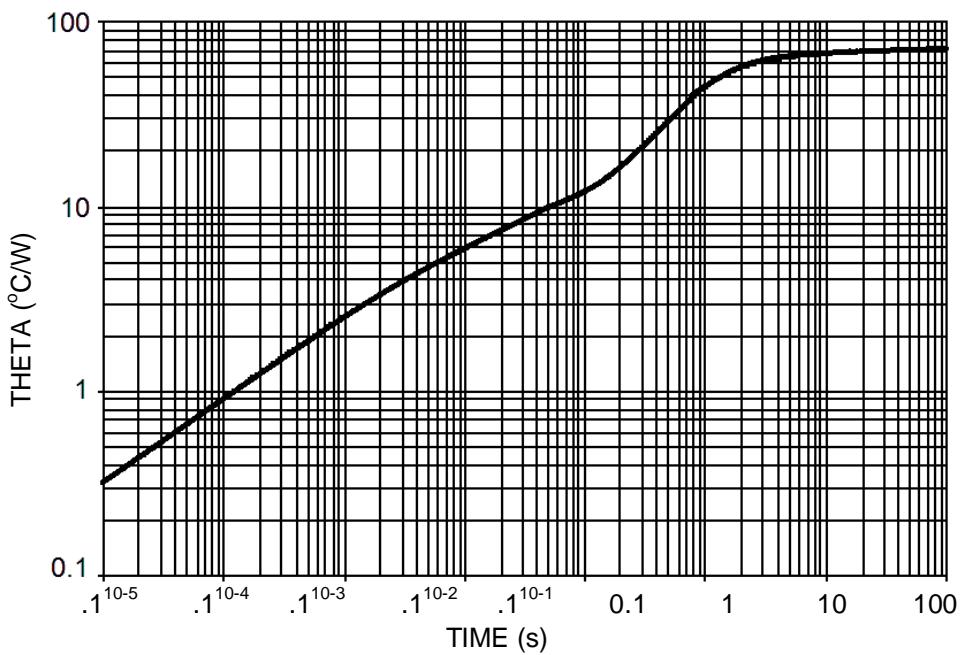
Test 1

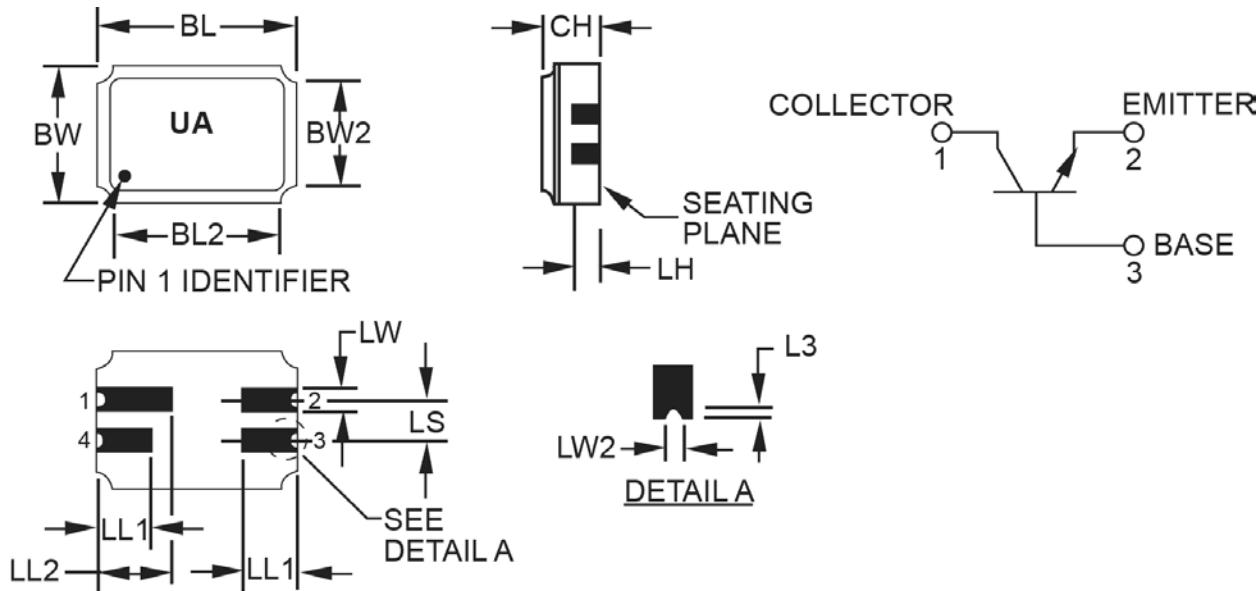

V_{CE} = 5.0 V, I_C = 1.0 A Both Types

Test 2


V_{CE} = 350 V, I_C = 14 mA 2N3439UA

Test 3


V_{CE} = 250 V, I_C = 20 mA 2N3440UA


Maximum Safe Operating graph (continuous dc)

GRAPHS

FIGURE 1
Temperature-Power Derating Curve
NOTES: Thermal Resistance Junction to Solder Pad = 70.0 °C/W
 Max Finish-Alloy Temp = 175.0 °C

FIGURE 2
Maximum Thermal Impedance
NOTE: T_C = +25 °C, Thermal Resistance R_{θJSP} = 70.0 °C/W, P_{diss} = 2 W.

PACKAGE DIMENSIONS

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Dimension "CH" controls the overall package thickness. When a window lid is used, dimension "CH" must increase by a minimum of .010 inch (0.254 mm) and a maximum of .040 inch (1.020 mm).
4. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
5. Dimensions "LW2" minimum and "L3" minimum and the appropriate castellation length define an unobstructed three-dimensional space traversing all of the ceramic layers in which a castellation was designed. (Castellations are required on bottom two layers, optional on top ceramic layer.) Dimension "LW2" maximum and "L3" maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of these dimensions may be made prior to solder dipping.
6. The co-planarity deviation of all terminal contact points, as defined by the device seating plane, shall not exceed .006 inch (0.15mm) for solder dipped leadless chip carriers.
7. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Symbol	Dimensions				Note	
	Inches		Millimeters			
	Min	Max	Min	Max		
BL	0.215	0.225	5.46	5.71		
BL2		0.225		5.71		
BW	0.145	0.155	3.68	3.93		
BW2		0.155		3.93		
CH	0.061	0.075	1.55	1.90	3	
L3	0.003	0.007	0.08	0.18	5	
LH	0.029	0.042	0.74	1.07		
LL1	0.032	0.048	0.81	1.22		
LL2	0.072	0.088	1.83	2.23		
LS	0.045	0.055	1.14	1.39		
LW	0.022	0.028	0.56	0.71		
LW2	0.006	0.022	0.15	0.56	5	

Pin no.	1	2	3	4
Transistor	Collector	Emitter	Base	N/C