

High Efficiency Power Management IC for TFT LCD

General Description

The SY7630C is a power management IC with one boost regulator, two charge pumps, one gate pulse modulator, one OPAMP, and one open drain reset output for TFT LCD power. The SY7630C operates over a wide input voltage range from 2.3V to 5.5V to optimize the device for 5V, 3.3V applications.

Ordering Information

Ordering Number	Package type	Note
SY7630CQCC	QFN4x4-24	----

Features

- 2.3-5.5V input voltage range
- Current mode boost regulator:
 - Low $R_{DS(ON)}$ for Boost internal switches: 140mΩ / 3.5A
 - 1.2MHz switching frequency
- Positive charge pump for VGH
- Negative charge pump for VGL
- Integrated gate pulse modulator with adjustable delay.
- Integrated operational amplifier
- Open drain reset output
- Compact package: QFN4x4-24

Applications

- TFT LCD Panels

Typical Applications



Figure 1. Schematic diagram

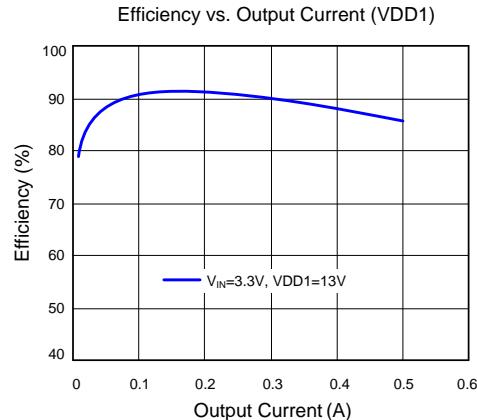
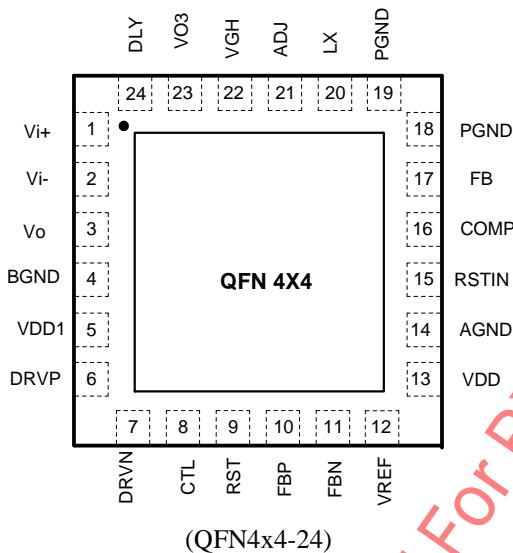
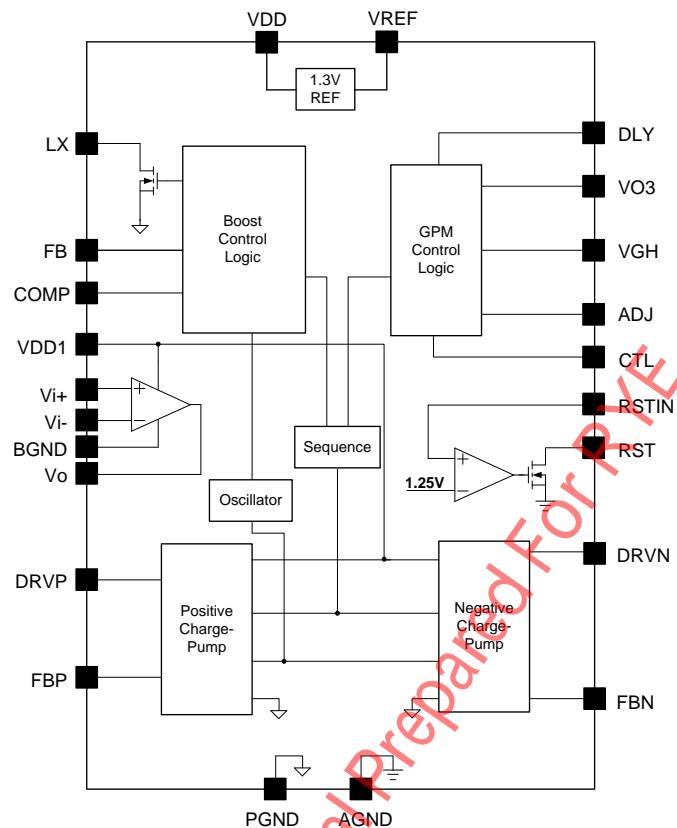



Figure 2. Boost Efficiency vs. Load Current


Pinout (top view)

Top Mark: CWT xyz (Device code: CWT, x=year code, y=week code, z= lot number code)

Pin Name	Pin Number	Pin Description
Vi+	1	VCOM buffer positive input pin
Vi-	2	VCOM buffer negative input pin
Vo	3	VCOM buffer output pin
BGND	4	Ground for VCOM buffer pin
VDD1	5	VCOM buffer and charge pump power supply pin
DRVp	6	Driver output of positive charge pump pin
DRVn	7	Driver output of negative charge pump pin
CTL	8	GPM (Gate Pulse Modulation) control pin
RST	9	Open drain reset output pin
FBP	10	Positive charge pump feedback pin
FBN	11	Negative charge pump feedback pin
VREF	12	Reference output pin
VDD	13	Supply voltage input pin
AGND	14	Analog ground pin
RSTIN	15	Reset input pin
COMP	16	Boost PWM compensation pin
FB	17	Boost PWM feedback pin
PGND	18	Power ground pin
PGND	19	Power ground pin
LX	20	Boost regulator switching node pin
ADJ	21	Pin to set the falling time of gate high voltage
VGH	22	Gate high output voltage for TFT pin
VO3	23	Gate High voltage input pin
DLY	24	VGH delay adjust pin

Block Diagram

Absolute Maximum Ratings (Note 1)

VDD	7V
CTL, RST, RSTIN	7V
VDD1, LX	22V
DRV _P , DRV _N , V _{i+} , V _{i-} , V _o	VDD1+0.3V
VO ₃	36V
ADJ, VGH	VO ₃ +0.3V
FBP, FBN, REF, COMP, FB, DLY	4V
Power Dissipation, PD @ TA = 25 °C QFN4x4-24	1.8W
Package Thermal Resistance (Note 2)	
θ JA	70 °C/W
θ JC	35 °C/W
Junction Temperature Range	150 °C
Lead Temperature (Soldering, 10 sec.)	260 °C
Storage Temperature Range	-65 °C to 150 °C

Recommended Operating Conditions (Note 3)

VDD	2.3V to 5.5V
VDD1	0 to 18V
Ambient Temperature Range	-40 °C to 85 °C
Junction Temperature Range	-40 °C to 125 °C

Electrical Characteristics

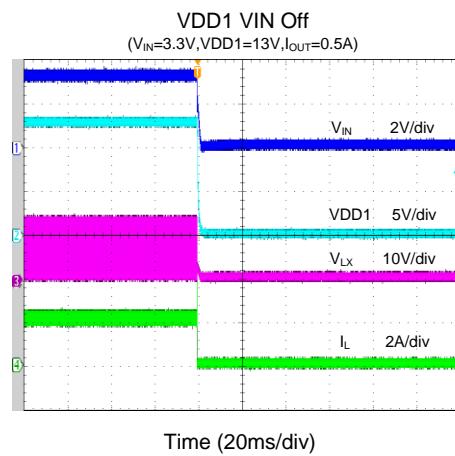
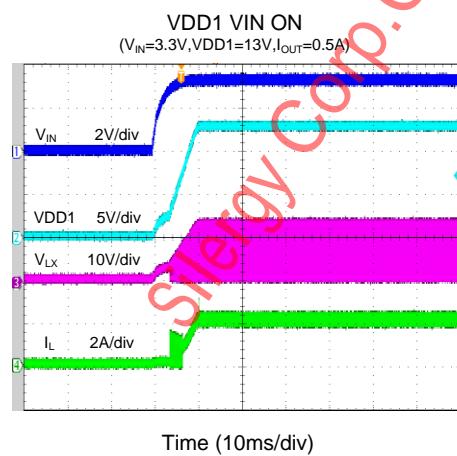
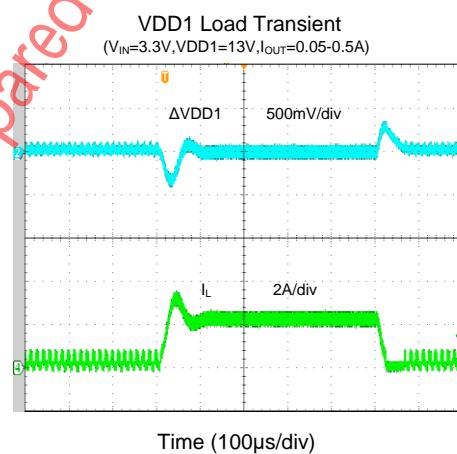
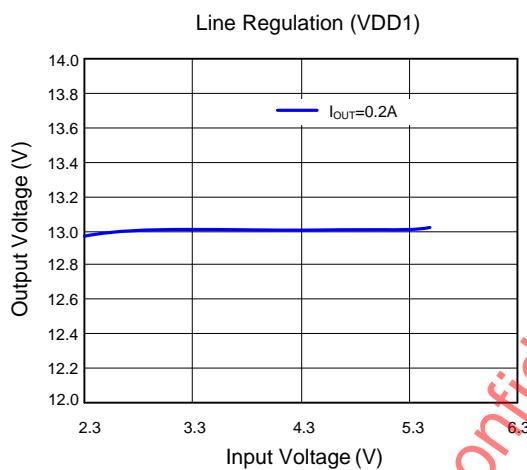
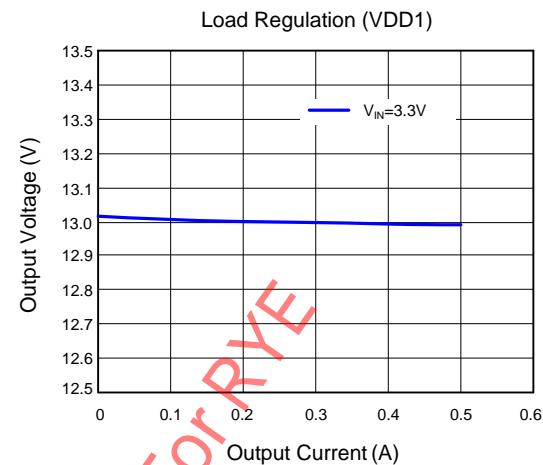
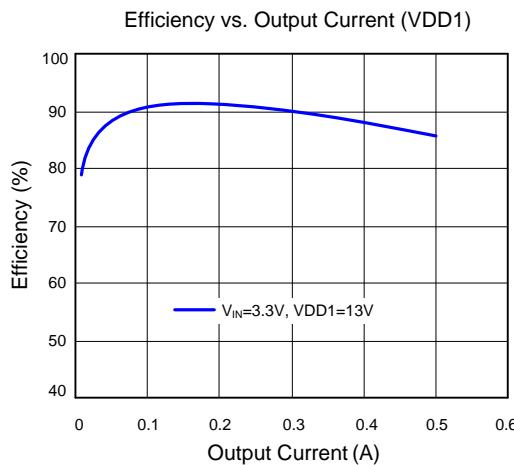
(VDD =3.3V, VDD1=13V, TA = 25 °C, unless otherwise specified)

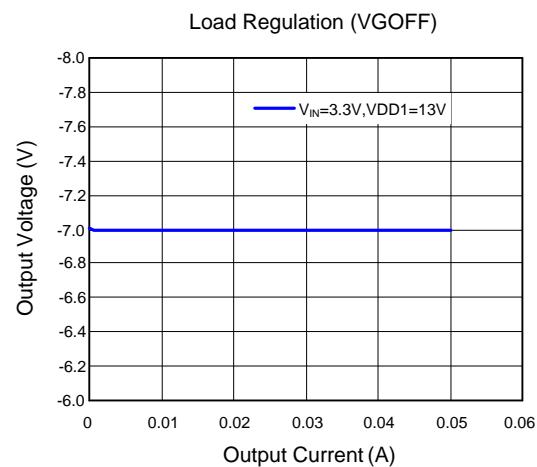
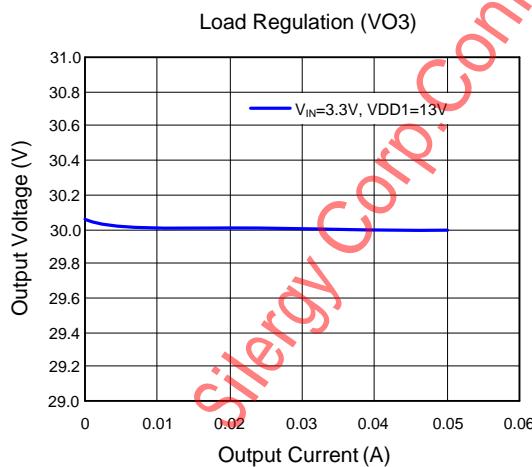
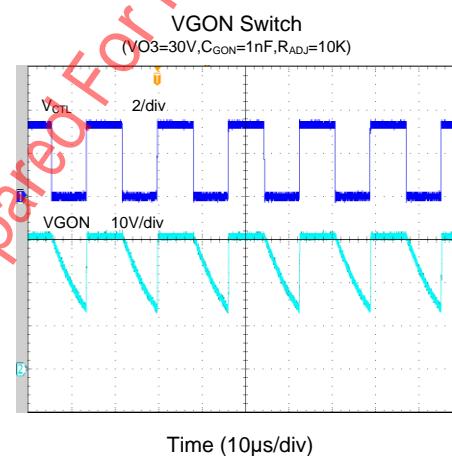
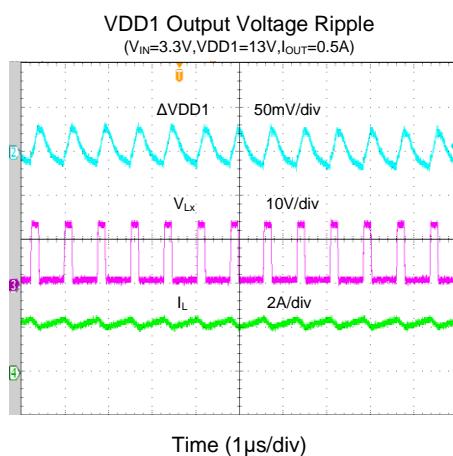
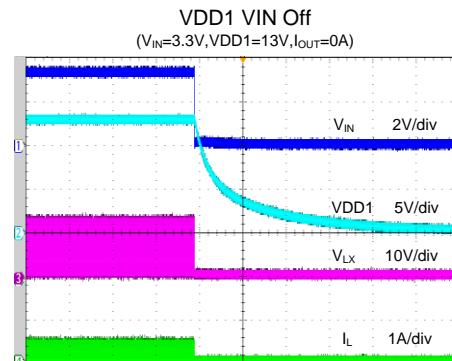
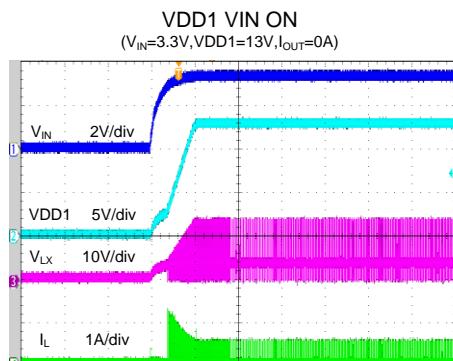
Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
VDD Input Voltage Range	V _{DD}		2.3		5.5	V
VDD UVLO Threshold	V _{UVLO}	VDD Rising			2.3	V
VDD UVLO Hysteresis	V _{HYS}			0.14		V
Reference Voltage	V _{REF}		1.274	1.3	1.326	V
Reference Line Regulation		I _{VREF} =100µA, V _{DD} =2.5V~5.5V	-	1	5	mV/V
Reference Load Regulation		I _{VREF} =0~100µA,	-		1	%
Boost Regulator						
Feedback Voltage	V _{FB}		1.238	1.25	1.262	V
FB Input Current	I _{FB}		-40		40	nA
Output Voltage Range		V _{VDD}			18	V
Boost FET Current Limit	I _{LIM}		2.5	3.5		A
Boost FET On-Resistance	R _{ON1}			0.14		Ω
Oscillator Frequency	FOSC		1.0	1.2	1.4	MHz
Charge Pump and Gate Pulse Modulator						
VDD1 Input Voltage Range	V _{H1}		6		18	V
Charge pump frequency	FOSC		500	600	700	kHz
DLY Current	I _{DLY}			5		µA
DLY threshold	V _{DLY}			1.25		V
VO3-VGH resistance	R _H			20		Ω
VGH-ADJ resistance	R _L			32		Ω
CTL high voltage			2			V
CTL low voltage					0.6	V
DRV/PDRV low side Switch R _{ON}	R _{ONP2}			5	10	Ω
DRV/PDRV high side Switch R _{ON}	R _{ONP3}			3	6	Ω
FBP Feedback Voltage	V _{FBP}		1.22	1.25	1.28	V
FBN Feedback Voltage	V _{FBN}		270	300	330	mV
OPAMP						
Input Offset Voltage	V _{OS}	V _{i+} =5V			50	mV
Input Bias Current	I _{BS}	V _{i+} =5V	-1	0	1	µA
Output Voltage Swing High	V _{OH}	I _{OUT} = 5mA	V _{VDD1} -200			mV
Output Voltage Swing Low	V _{OL}	I _{OUT} = -5mA			200	mV
Short-circuit current	I _{short}			200		mA
Slew Rate	S _R	V _{i+} =2V to 8V/ 8V to 2V 20% to 80%		40		V/µs
Reset Output						
RSTIN Threshold	V _{INR}		1.2	1.25	1.3	V
RST Output Voltage	V _{RST}	I _{RST} =1.2mA			0.2	V
RST Blank Time	t _{BLK,RST}	From VDD rises above UVLO		380		ms
Soft Start and Fault Detection						
Boost Soft Start Time	T _{SS1}			8		ms
VGL Soft Start Time	T _{SS2}			5		ms
VGH Soft Start Time	T _{SS3}			8		ms
Time out for fault protection	T _{FP}			130		ms
FB Fault Protection Voltage	V _{F1}		0.95	1.00	1.05	V
FBN Fault Protection Voltage	V _{F2}		0.40	0.50	0.60	V
FBP Fault Protection Voltage	V _{F3}		0.95	1.00	1.05	V

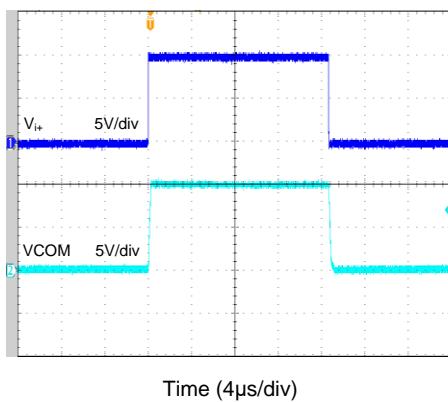
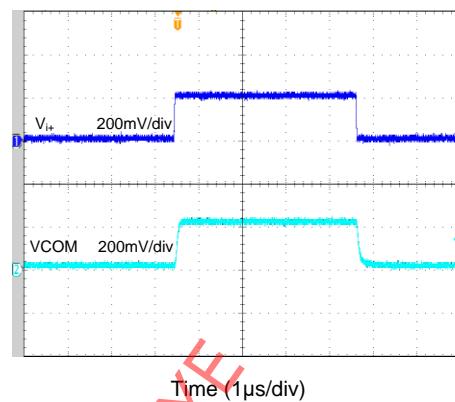
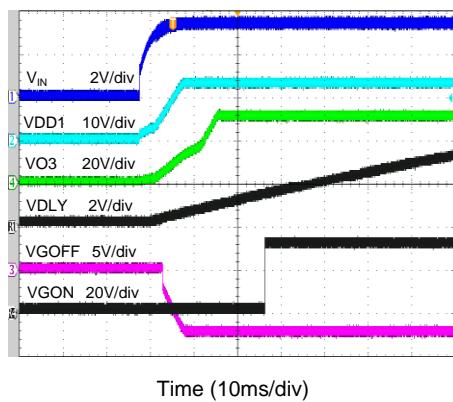
SILERGY

SY7630C

FB Under Voltage Protection	V _{F4}			0.1		V
Thermal Shutdown Temperature	TSD			150		°C







Note 1: Stresses beyond the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.







Note 2: θ_{JA} is measured in the natural convection at $TA = 25^\circ\text{C}$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.




Note 3: The device is not guaranteed to function outside its operating conditions.

Silergy Corp. Confidential-Prepared For RVE

Typical Performance Characteristics

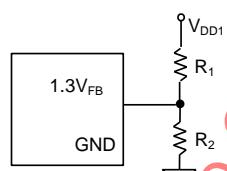
VCOM Large Signal Step Response

VCOM Small Signal Step Response

Power Up Sequence

Operation

SY7630C is a power management IC for TFT LCD bias supply. The device contains a Boost regulator to generate the source driver supply, and two charge-pump regulators to generate the gate driver supplies. Each regulator features adjustable output voltage and timer delayed fault protection. SY7630C also integrates a high performance OPAMP to drive the LCD backplane, and an open drain reset output.


Boost Regulator

SY7630C adopts constant frequency peak current mode control to ensure reliable over current protection and cycle by cycle switch current limit. With 1.2MHz switching frequency, it allows choosing small size ceramic capacitors and inductors to adapt LCD panel design.

Feedback resistor dividers R1 and R2:

The output voltage can be set from VIN to 18V with feedback resistor dividers R1 and R2. To minimize the power consumption under light loads, it is desirable to choose large resistance values for both R1 and R2. A value of between 10k and 1M is recommended for both resistors. Output voltage VDD1 can be calculated to be:

$$V_{DD1} = (1 + R1 / R2) \times V_{FB}$$

Where $V_{FB}=1.25V$ is the reference voltage.

Inductor L1:

There are several considerations in choosing this inductor.

- 1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the maximum average input current. The inductance is calculated as:

$$L1 = \left(\frac{V_{IN}}{V_{DD1}} \right)^2 \times \frac{(V_{DD1} - V_{IN}) \times \eta}{F_s \times I_{VDD1,MAX} \times 40\%}$$

Where F_s is the switching frequency, $I_{VDD1,MAX}$ is the maximum load current of the boost regulator

and η is the estimating efficiency of that operating point.

- 2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

$$I_{SAT,MIN} > \frac{V_{DD1}}{V_{IN} \times \eta} \times I_{VDD1,MAX} + \frac{V_{IN} \times (V_{DD1} - V_{IN})}{2 \times F_s \times L1 \times V_{DD1}}$$

- 3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement.

Output capacitor COUT1:

The output capacitor is selected to handle the output ripple noise requirements. Both steady state ripple and transient requirements must be taken into consideration when selecting this capacitor. The output capacitor is calculated as:

$$C_{OUT1} = \frac{I_{VDD1} \times (V_{DD1} - V_{IN})}{F_s \times V_{DD1} \times \Delta V_{DD1}}$$

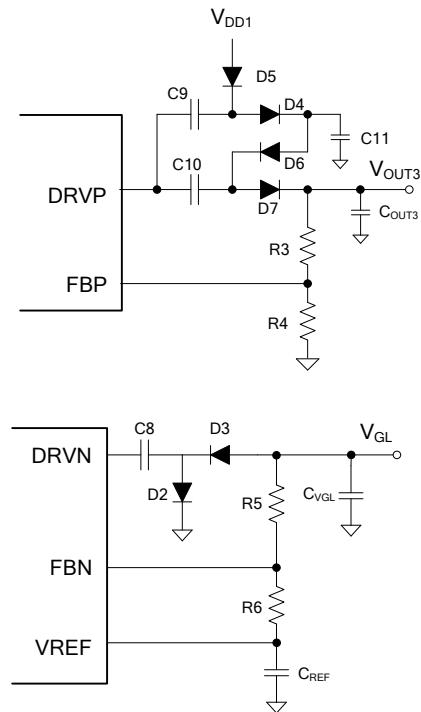
Where ΔV_{DD1} is output voltage ripple.

Input capacitor

The input capacitor reduces the ripple current drawn from input supply and reduces the noise injection into IC. The RMS current in the capacitor can be calculated as:

$$I_{CIN_RMS} = \frac{V_{IN} \times (V_{DD1} - V_{IN})}{2\sqrt{3} \times L_1 \times F_s \times V_{DD1}}$$

It is recommended to use an X5R or better grade ceramic capacitor with greater than 10uF capacitance. Greater voltage variation can be tolerated on C_{IN} if VDD is decoupled from C_{IN} using an RC low pass filter.


Fault Protection

During steady-state operation, if the output of the Boost regulator or any of charge pump outputs exceeds their respective fault-detection thresholds, the internal 130ms fault timer is activated. If fault condition continues, the fault timer will time out and the IC will shut down all outputs.

Charge-Pump Regulator

The positive charge-pump regulator is used to generate the positive supply rail for the TFT LCD gate-driver

ICs. And the negative charge-pump regulator is used to generate the negative supply rail for the TFT LCD gate-driver ICs. The output voltage is determined by the number of charge-pump stages and the setting of the feedback divider.

The number of charge-pump stages

The number of positive charge-pump stages N_p is chosen by:

$$N_p \geq \frac{V_{OUT3} - V_{DD1}}{V_{DD1} - 2 \times V_D}$$

The number of negative charge-pump stages N_n is chosen by:

$$N_n \geq \frac{-V_{GL}}{V_{DD1} - 2 \times V_D}$$

Where V_{OUT3} is the output voltage of positive charge-pump regulator, V_{GL} is the output voltage of negative charge-pump regulator, V_D is the forward voltage drop of the charge-pump. The lowest number of charge-pump stages is always chosen for the highest efficiency.

The output voltage of charge-pump

Output voltage V_{OUT3} and V_{GL} can be calculated to be:

$$V_{OUT3} = (1 + R3 / R4) \times V_{FBP}$$

$$V_{GL} = (V_{FBP} - V_{REF}) \times \frac{R5}{R6} + V_{FBP}$$

Where $V_{FBP}=1.25V$, $V_{FBP}=0.3V$, $V_{REF}=1.3V$.

Flying Capacitors(C8,C9,C10)

For the flying capacitors (C8, C9, C10), a $0.1\mu F$ ceramic capacitor is recommended, it works well in most low-current applications. The voltage rating V_{RX} of the flying capacitors as following:

$$V_{RX} > N \times V_{DD1}$$

Where N is the number of charge-pump stages.

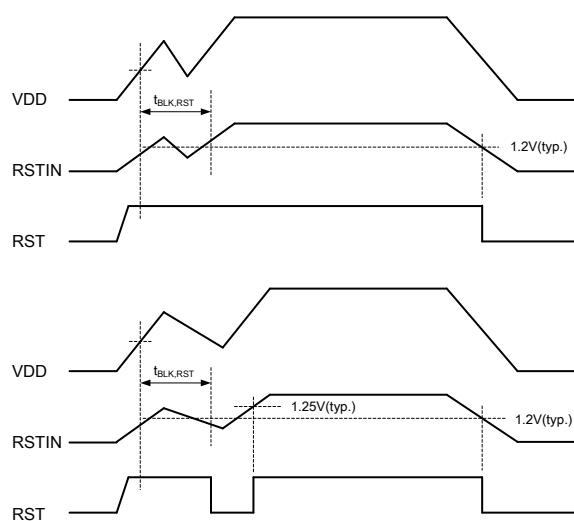
The output capacitors of charge-pump(COUT3,CVGL)

The output capacitor C_{OUT3} and C_{VGL} are selected to handle the output ripple noise requirements. The output capacitance is calculated as:

$$C_{OUT3} \geq \frac{I_{OUT3}}{2 \times F_S \times \Delta V_{OUT3}}$$

$$C_{VGL} \geq \frac{I_{VGL}}{2 \times F_S \times \Delta V_{VGL}}$$

Operational Amplifier

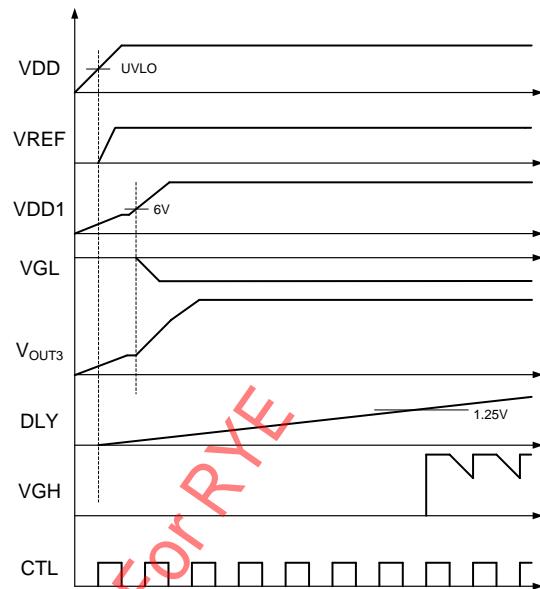

SY7630C contains one high performance operational amplifier to drive the LCD backplane or gamma-correction divider string. The OPAMP features $\pm 200mA$ output short circuit current limitation, fast slew rate, wide bandwidth and rail-to-rail outputs.

Gate Pulse Modulator

The gate pulse modulator contains two high voltage, p-channel MOSFETs. One MOSFET is between VO_3 and VGH , the other is between VGH and ADJ . The control input pin CTL controls these two MOSFETs. Once CTL is activated, VGH connect to VO_3 when CTL is high and VGH connect to ADJ when CTL is low. The CTL is not activated until all the following conditions are satisfied: the input voltage is higher than $UVLO$, all regulators finish soft-start routine, DLY pin voltage exceeds its turn-on threshold and there is no fault condition.

Reset Output

RST is an open-drain output. It is controlled by $RSTIN$ and VDD . Once VDD voltage exceeds $UVLO$ threshold, the reset circuit initiates a 380ms blanking period during which the drop on VDD is ignored and RST is set to high impedance. After this blanking period and if $RSTIN$ goes below approximately 1.25V, RST is pulled low.

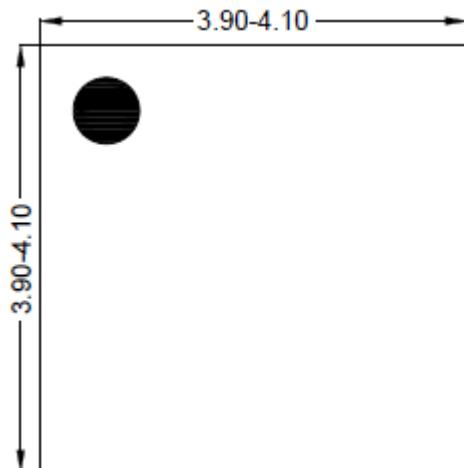


Power on sequence

When VDD exceed its UVLO threshold, the reference block turns on. After reference stabilize, the IC enables the boost regulator, the positive charge-pump regulator and the negative charge-pump regulator.

The start up delay time of gate pulse modulator block is determined by the capacitor C_{DEL} . After VDD exceed UVLO, a $5\mu A$ current source starts charging C_{DEL} , when V_{DEL} is higher than $1.25V$, IC enable the gate pulse modulator, and the output of VGH is depending on the level of CTL pin. When VDD is less than UVLO, DLY pin is connected to AGND internally to discharge C_{DEL} . The delay time is calculated as:

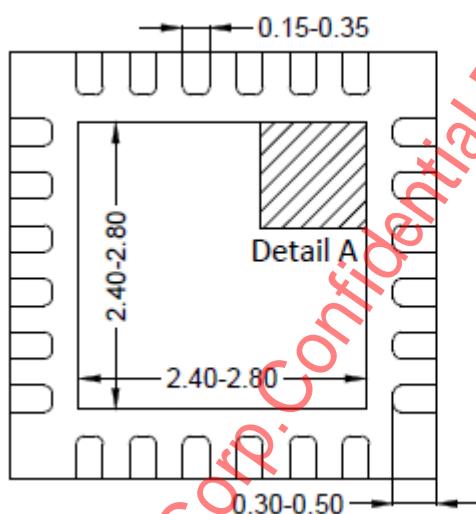
$$T_{DELAY} = C_{DEL} \times \frac{1.25}{5\mu A}$$

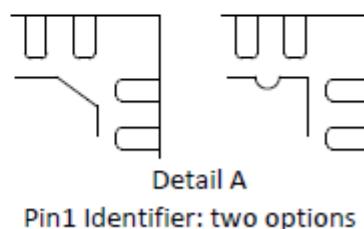


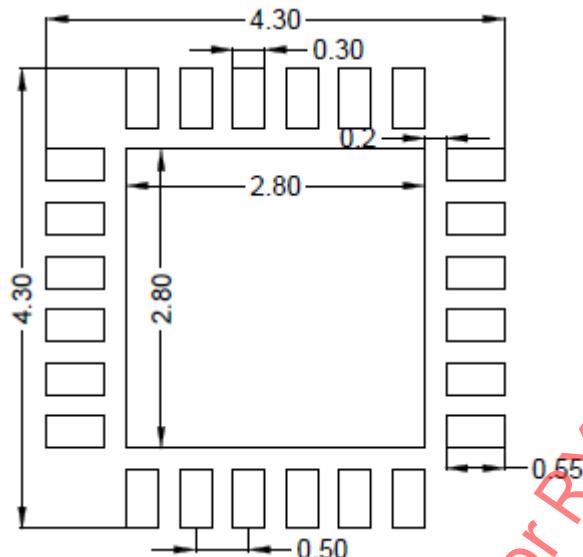
Layout Design:

The layout design of SY7630C is very important for proper operation. Following are the tips for good PCB layout.

- 1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.
- 2) Place the VDD pin and REF pin bypass capacitors close to IC. The ground connection the bypass capacitor should be connected directly to the AGND pin with a wide trace.
- 3) Minimize the loop area formed by C_{VDD1} , D_1 , L_X and PGND of IC
- 4) The PCB copper area associated with switching nodes must be minimized to avoid the potential noise problem.
- 5) Place feedback resistors near to IC and avoid running feedback trace near to switching nodes.

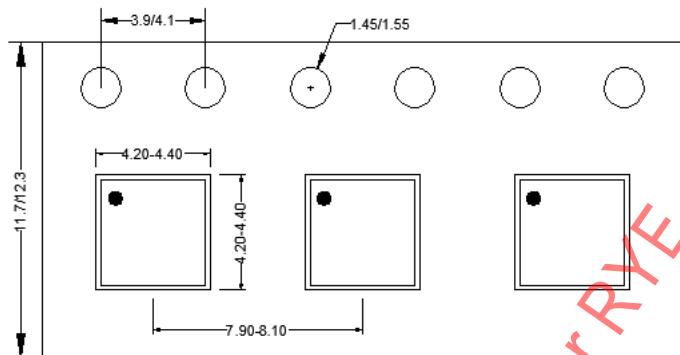

QFN4x4-24 Package Outline Drawing


Top view

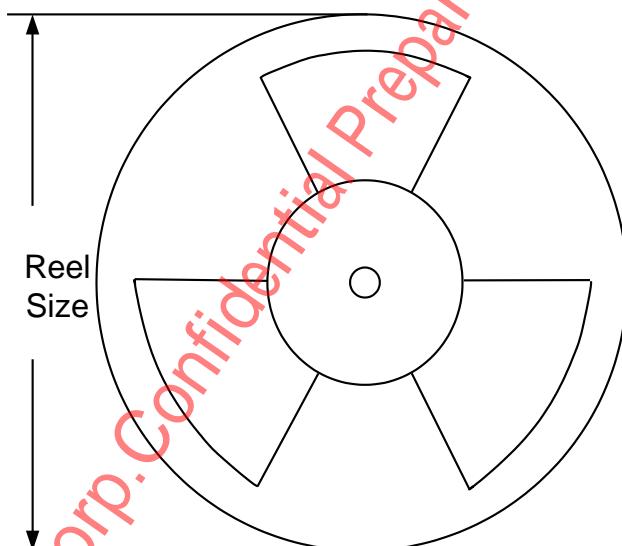

Side view

Bottom view

Detail A
Pin1 Identifier: two options


Recommended PCB layout (Reference only)

Notes: All dimension in MM and exclude mold flash & metal burr


Taping & Reel Specification

1. Taping orientation

QFN4×4

2. Carrier Tape & Reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
QFN4×4	12	8	13"	400	400	5000

3. Others: NA

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.
2. **Applications.** Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
3. **Limited warranty and liability.** Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
5. **Terms and conditions of commercial sale.** Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at <http://www.silergy.com/stdterms>, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
6. **No offer to sell or license.** Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2018 Silergy Corp.

All Rights Reserved.