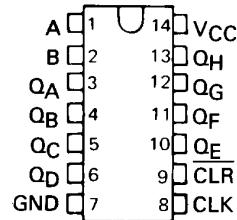


SN54164, SN54LS164, SN74164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

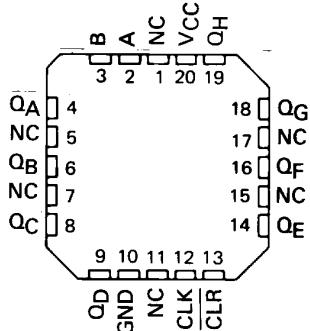
MARCH 1974 — REVISED MARCH 1988

- Gated Serial Inputs
- Fully Buffered Clock and Serial Inputs
- Asynchronous Clear

SN54164, SN54LS164 . . . J OR W PACKAGE
SN74164 . . . N PACKAGE
SN74LS164 . . . D OR N PACKAGE


(TOP VIEW)

TYPE	TYPICAL		TYPICAL	POWER DISSIPATION
	MAXIMUM	CLOCK FREQUENCY		
'164	36 MHz		21 mW per bit	
'LS164	36 MHz		10 mW per bit	


description

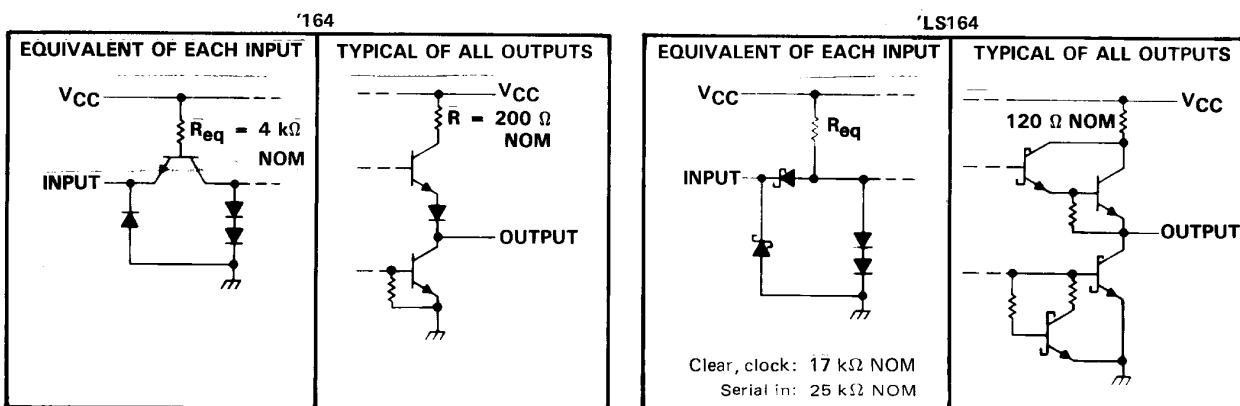
These 8-bit shift registers feature gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either input inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup-time requirements will be entered. Clocking occurs on the low-to-high-level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

The SN54164 and SN54LS164 are characterized for operation over the full military temperature range of -55°C to 125°C . The SN74164 and SN74LS164 are characterized for operation from 0°C to 70°C .

SN54LS164 . . . FK PACKAGE
(TOP VIEW)

2

TTL Devices

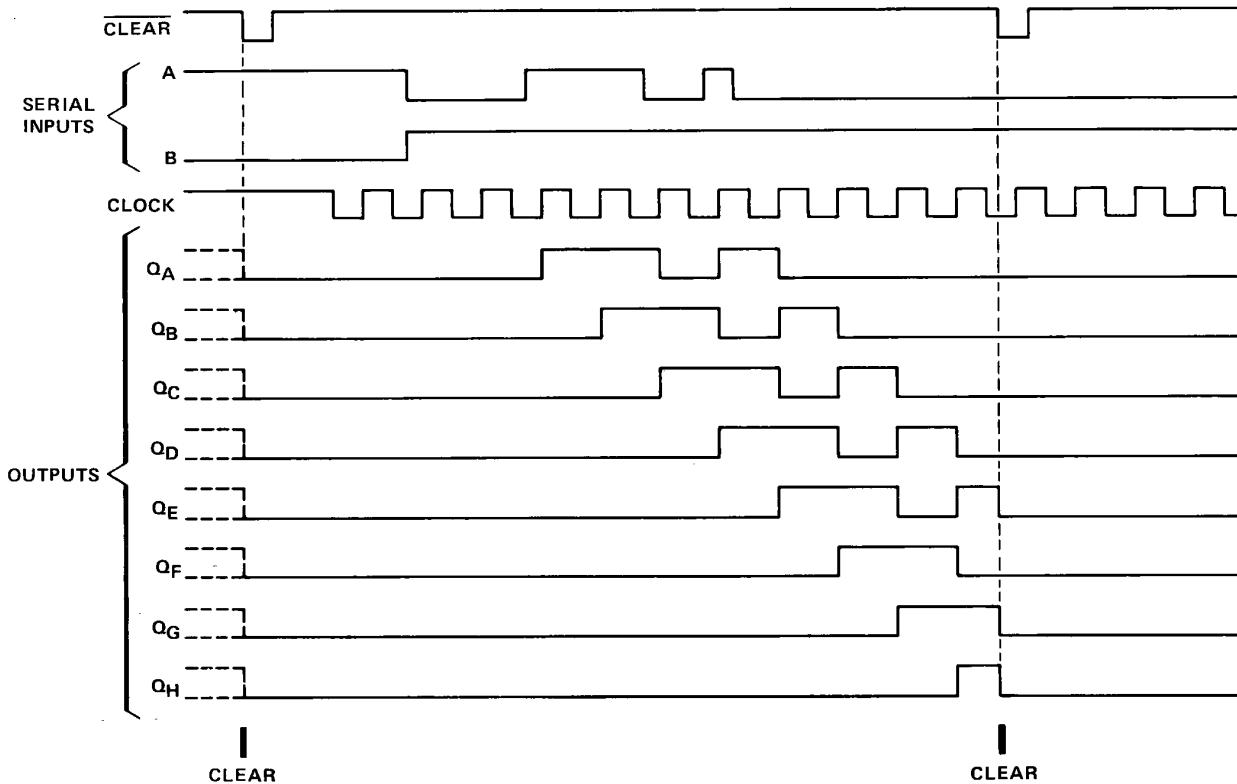

FUNCTION TABLE

INPUTS			OUTPUTS			
CLEAR	CLOCK	A	B	QA	QB	... QH
L	X	X	X	L	L	L
H	L	X	X	QA0	QB0	QH0
H	↑	H	H	H	QA _n	QG _n
H	↑	L	X	L	QA _n	QG _n
H	↑	X	L	L	QA _n	QG _n

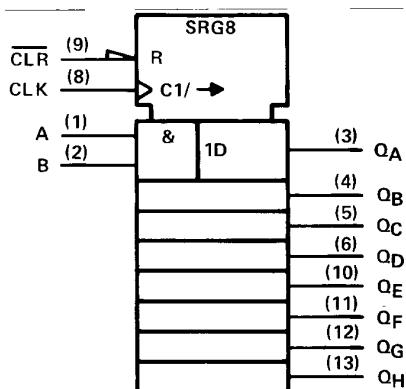
H = high level (steady state), L = low level (steady state)
X = irrelevant (any input, including transitions)
↑ = transition from low to high level.
QA₀, QB₀, QH₀ = the level of QA, QB, or QH, respectively, before the indicated steady-state input conditions were established.
QA_n, QG_n = the level of QA or QG before the most-recent ↑ transition of the clock; indicates a one-bit shift.

NC — No internal connection

schematics of inputs and outputs

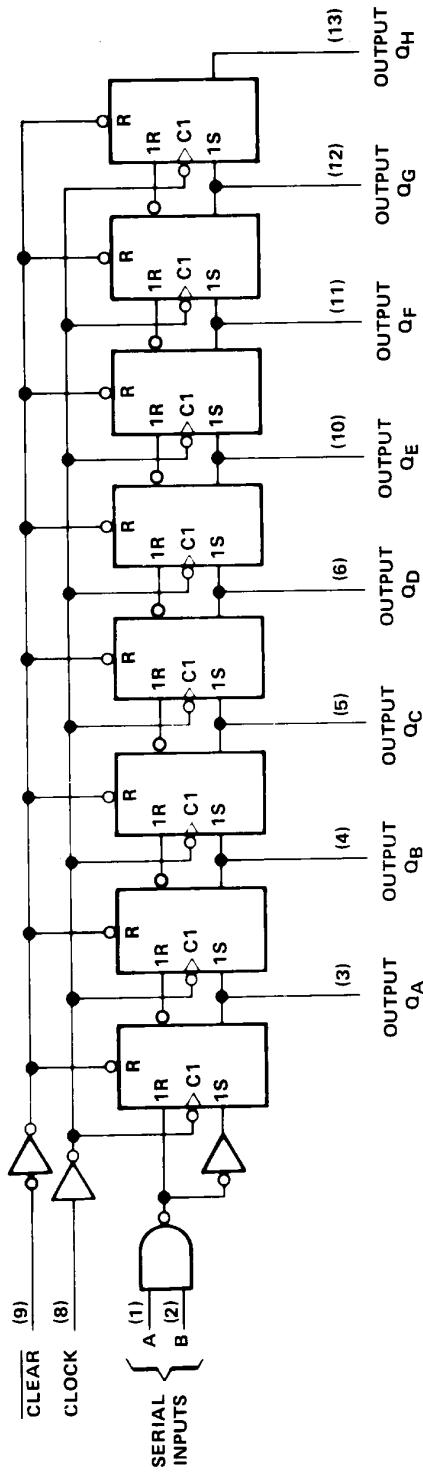


TEXAS
INSTRUMENTS


POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

SN54164, SN54LS164, SN74164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

typical clear, shift, and clear sequences


logic symbol†

†This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, J, N, and W packages.

SN54164, SN54LS164, SN74164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

2

TTL Devices

SN54164, SN74164

8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)	7 V
Input voltage	5.5 V
Operating free-air temperature range: SN54164	-55°C to 125°C
SN74164	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SN54164			SN74164			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}		-400			-400		μA
Low-level output current, I_{OL}		8			8		mA
Clock frequency, f_{clock}	0	25	0	0	25	0	MHz
Width of clock or clear input pulse, t_W	20		20			ns	
Data setup time, t_{SU} (see Figure 1)	15		15			ns	
Data setup time, t_{SU} (Clear Inactive) (see Figure 1)	20		20			ns	
Data hold time, t_H (see Figure 1)	5		5			ns	
Operating free-air temperature, T_A	-55	125	0	0	70	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN54164			SN74164			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V_{IH} High-level input voltage		2		2			2	V
V_{IL} Low-level input voltage			0.8		0.8		0.8	V
V_{IK} Input clamp voltage	$V_{CC} = \text{MIN}$, $I_I = -12 \text{ mA}$		-1.5		-1.5		-1.5	V
V_{OH} High-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = 0.8 \text{ V}$, $I_{OH} = -400 \mu\text{A}$	2.4	3.2		2.4	3.2		V
V_{OL} Low-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = 0.8 \text{ V}$, $I_{OL} = 8 \text{ mA}$	0.2	0.4		0.2	0.4		V
I_I Input current at maximum input voltage	$V_{CC} = \text{MAX}$, $V_I = 5.5 \text{ V}$		1			1		mA
I_{IH} High-level input current	$V_{CC} = \text{MAX}$, $V_I = 2.4 \text{ V}$		40			40		μA
I_{IL} Low-level input current	$V_{CC} = \text{MAX}$, $V_I = 0.4 \text{ V}$		-1.6			-1.6		mA
I_{OS} Short-circuit output current [§]	$V_{CC} = \text{MAX}$	-10	-27.5		-9	-27.5		mA
I_{CC} Supply current	$V_{CC} = \text{MAX}$, $V_I(\text{clock}) = 0.4 \text{ V}$		30		30			mA
	See Note 2		37	54	37	54		

[†] For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

[§] Not more than two outputs should be shorted at a time.

NOTE 2: I_{CC} is measured with outputs open, serial inputs grounded, and a momentary ground, then 4.5 V, applied to clear.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
f_{max} Maximum clock frequency	$R_L = 800 \Omega$, See Figure 1	$C_L = 15 \text{ pF}$	25	36	MHz	
Propagation delay time, high-to-low-level Q outputs from clear input		$C_L = 15 \text{ pF}$	24	36	ns	
Propagation delay time, low-to-high-level Q outputs from clock input		$C_L = 50 \text{ pF}$	28	42		
Propagation delay time, high-to-low-level Q outputs from the clock input		$C_L = 15 \text{ pF}$	8	17	27	
t_{PHL}		$C_L = 50 \text{ pF}$	10	20	30	
		$C_L = 15 \text{ pF}$	10	21	32	
t_{PLH}		$C_L = 50 \text{ pF}$	10	25	37	

SN54LS164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54LS164			SN74LS164			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High-level input voltage		2			2		V
V _{IL}	Low-level input voltage			0.7			0.8	V
I _{OH}	High-level output current			- 0.4			- 0.4	mA
I _{OL}	Low-level output current			4			8	mA
f _{clock}	Clock frequency	0	25		0	25		MHz
t _W	Width of clock or clear input pulse	20			20			ns
t _{su}	Data setup time (See Figure 1)	15			15			ns
t _{su}	Clear inactive setup time (See Figure 1)	20			20			ns
t _h	Data hold time (See Figure 1)	5			5			ns
T _A	Operating free-air temperature	- 55	125		0	70		°C

2

TTL Devices

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN54LS164			SN74LS164			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V _{IK}	V _{CC} = MIN, I _I = -18 mA			-1.5			-1.5	V
V _{OH}	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = MAX, I _{OH} = -0.4 mA	2.5	3.5		2.7	3.5		V
V _{OL}	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = MAX	I _{OL} = 4 mA	0.25	0.4	0.25	0.4		V
		I _{OL} = 8 mA			0.35	0.5		
I _I	V _{CC} = MAX, V _I = 7 V			0.1			0.1	mA
I _{IH}	V _{CC} = MAX, V _I = 2.7 V		20		20			µA
I _{IL}	V _{CC} = MAX, V _I = 0.4 V			-0.4			-0.4	mA
I _{OS}	V _{CC} = MAX	-20	-100	-20	-100			mA
I _{CC}	V _{CC} = MAX, See Note 3		16	27	16	27		mA

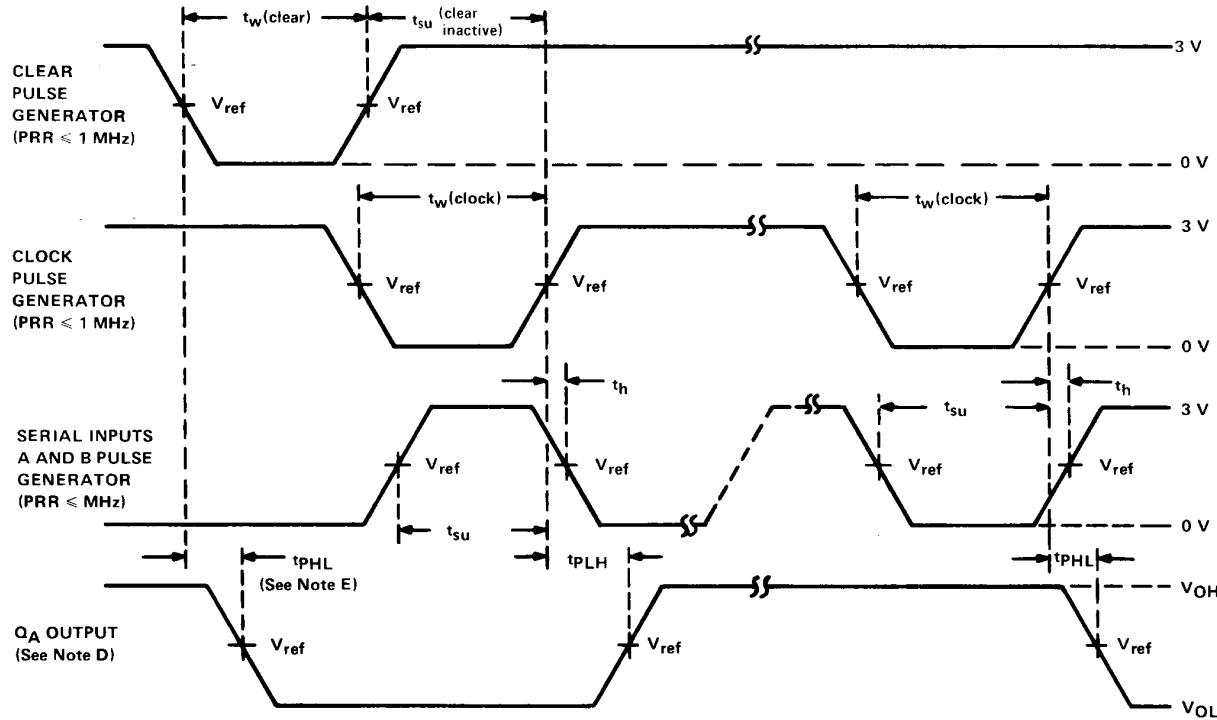
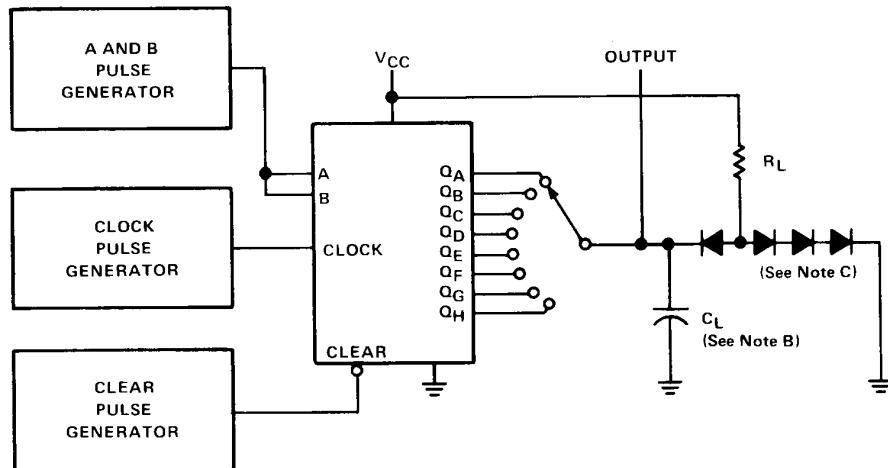
[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[†]All typical values are at $V_{CC} = 5$ V, $T_A = 25^\circ\text{C}$.

§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 3: I_{CC} is measured with outputs open, serial inputs grounded, the clock input at 2.4 V, and a momentary ground, then 4.5 V applied to clear.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$



PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{max}	Maximum clock frequency	$R_L = 2 \text{ k}\Omega, C_L = 15 \text{ pF},$ See Figure 1	25	36		MHz
t_{PHL}	Propagation delay time, high-to-low-level Q outputs from clear input		24	36	ns	
t_{PLH}	Propagation delay time, low-to-high-level Q outputs from clock input		17	27	ns	
t_{PHL}	Propagation delay time, high-to-low-level Q outputs from clock input		21	32	ns	

SN54164, SN54LS164, SN74164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

2

TTL Devices

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generators have the following characteristics: duty cycle $\leq 50\%$, $Z_{out} \approx 50 \Omega$; for '164, $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$; and for 'LS164, $t_r \leq 15 \text{ ns}$, $t_f \leq 6 \text{ ns}$.
 B. C_L includes probe and jig capacitance.
 C. All diodes are 1N3064 or equivalent.
 D. Q_A output is illustrated. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence.
 E. Outputs are set to the high level prior to the measurement of t_{PHL} from the clear input.
 F. For '164, $V_{ref} = 1.5 \text{ V}$; for 'LS164, $V_{ref} = 1.3 \text{ V}$.

FIGURE 1—SWITCHING TIMES

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
JM38510/30605B2A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605B2A
JM38510/30605B2A.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605B2A
JM38510/30605B2A.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605B2A
JM38510/30605BCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BCA
JM38510/30605BCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BCA
JM38510/30605BCA.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BCA
JM38510/30605BCA.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BCA
JM38510/30605BDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BDA
JM38510/30605BDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BDA
JM38510/30605BDA.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BDA
JM38510/30605BDA.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BDA
JM38510/30605SCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SCA
JM38510/30605SCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SCA
JM38510/30605SCA.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SCA
JM38510/30605SCA.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SCA
JM38510/30605SDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SDA

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
JM38510/30605SDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SDA
JM38510/30605SDA.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SDA
JM38510/30605SDA.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SDA
M38510/30605B2A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605B2A
M38510/30605B2A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605B2A
M38510/30605BCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BCA
M38510/30605BCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BCA
M38510/30605BDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BDA
M38510/30605BDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605BDA
M38510/30605SCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SCA
M38510/30605SCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SCA
M38510/30605SDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SDA
M38510/30605SDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30605SDA
SN54LS164J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54LS164J
SN54LS164J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54LS164J
SN54LS164J.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54LS164J
SN54LS164J.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54LS164J
SN74LS164D	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	0 to 70	LS164
SN74LS164D	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	0 to 70	LS164
SN74LS164DR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS164
SN74LS164DR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS164

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
SN74LS164DR.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS164
SN74LS164DR.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS164
SN74LS164N	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS164N
SN74LS164N	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS164N
SN74LS164N.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS164N
SN74LS164N.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS164N
SN74LS164NE4	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS164N
SN74LS164NE4	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS164N
SN74LS164NSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS164
SN74LS164NSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS164
SN74LS164NSR.A	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS164
SN74LS164NSR.A	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS164
SN74LS164NSRE4	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS164
SN74LS164NSRE4	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS164
SNJ54LS164FK	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS 164FK
SNJ54LS164FK	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS 164FK
SNJ54LS164FK.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS 164FK
SNJ54LS164FK.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS 164FK
SNJ54LS164J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS164J
SNJ54LS164J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS164J
SNJ54LS164J.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS164J
SNJ54LS164J.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS164J
SNJ54LS164W	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS164W
SNJ54LS164W	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS164W
SNJ54LS164W.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS164W
SNJ54LS164W.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54LS164W

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

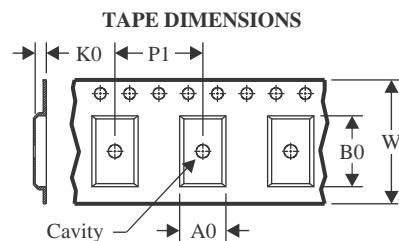
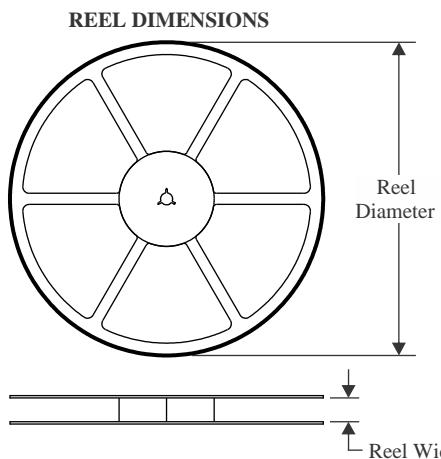
⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

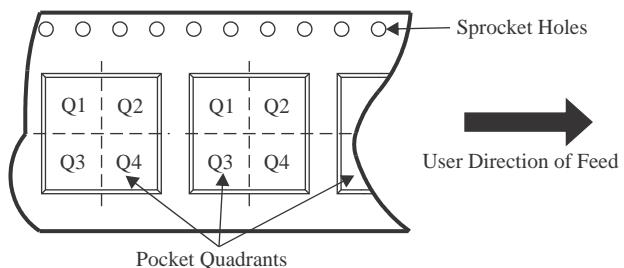
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

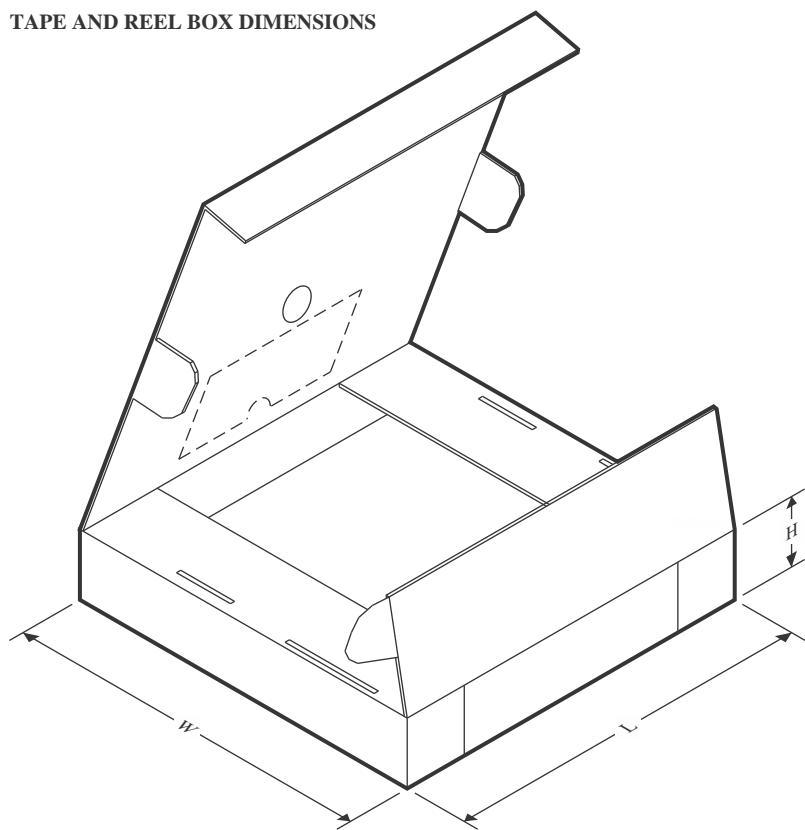
OTHER QUALIFIED VERSIONS OF SN54LS164, SN54LS164-SP, SN74LS164 :



- Catalog : [SN74LS164](#), [SN54LS164](#)
- Military : [SN54LS164](#)
- Space : [SN54LS164-SP](#)

NOTE: Qualified Version Definitions:

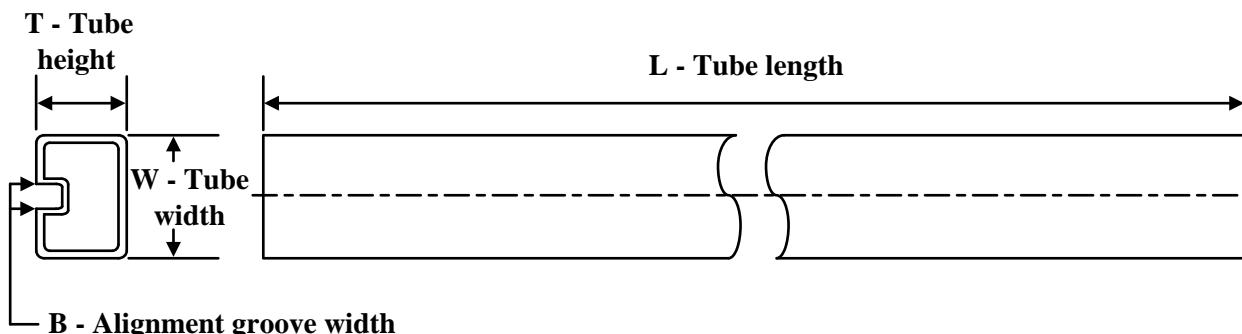

- Catalog - TI's standard catalog product

- Military - QML certified for Military and Defense Applications
- Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS164DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS164NSR	SOP	NS	14	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

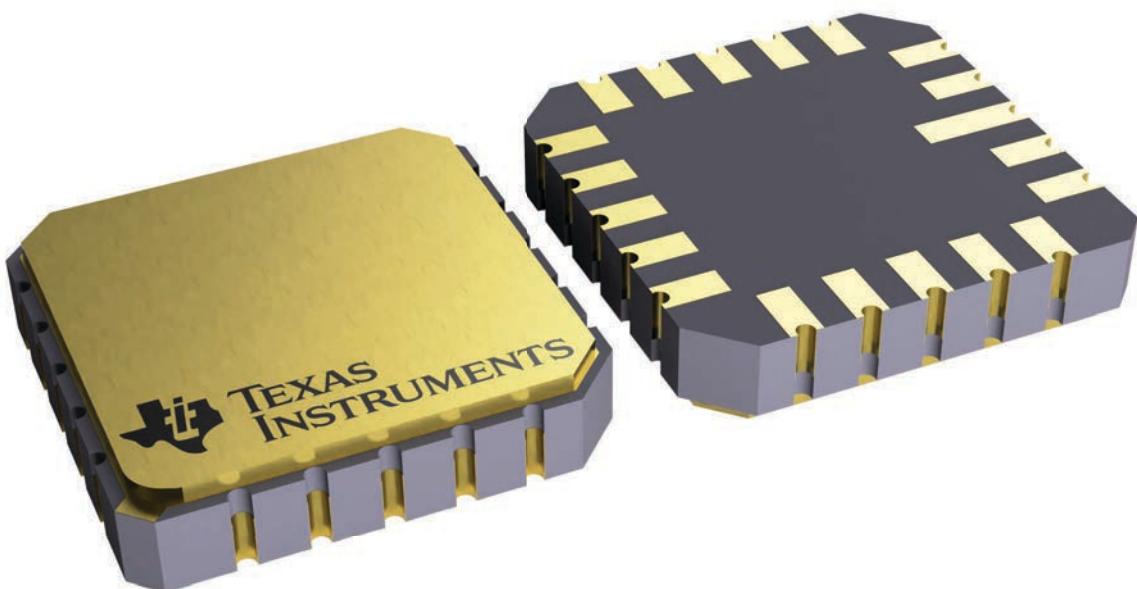
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS164DR	SOIC	D	14	2500	353.0	353.0	32.0
SN74LS164NSR	SOP	NS	14	2000	353.0	353.0	32.0

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
JM38510/30605B2A	FK	LCCC	20	55	506.98	12.06	2030	NA
JM38510/30605B2A.A	FK	LCCC	20	55	506.98	12.06	2030	NA
JM38510/30605BDA	W	CFP	14	25	506.98	26.16	6220	NA
JM38510/30605BDA.A	W	CFP	14	25	506.98	26.16	6220	NA
JM38510/30605SDA	W	CFP	14	25	506.98	26.16	6220	NA
JM38510/30605SDA.A	W	CFP	14	25	506.98	26.16	6220	NA
M38510/30605B2A	FK	LCCC	20	55	506.98	12.06	2030	NA
M38510/30605BDA	W	CFP	14	25	506.98	26.16	6220	NA
M38510/30605SDA	W	CFP	14	25	506.98	26.16	6220	NA
SN74LS164N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS164N.A	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS164NE4	N	PDIP	14	25	506	13.97	11230	4.32
SNJ54LS164FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54LS164FK.A	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54LS164W	W	CFP	14	25	506.98	26.16	6220	NA
SNJ54LS164W.A	W	CFP	14	25	506.98	26.16	6220	NA

GENERIC PACKAGE VIEW

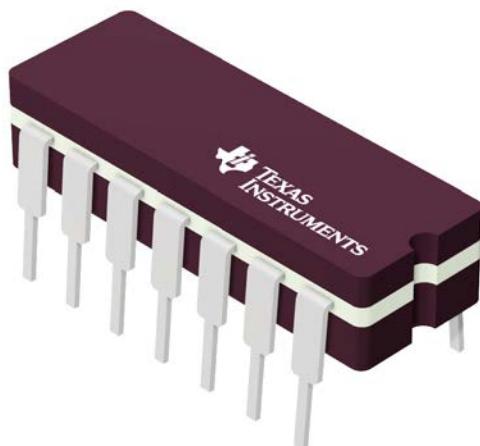

FK 20

LCCC - 2.03 mm max height

8.89 x 8.89, 1.27 mm pitch

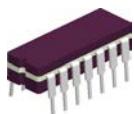
LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.


4229370VA\

GENERIC PACKAGE VIEW

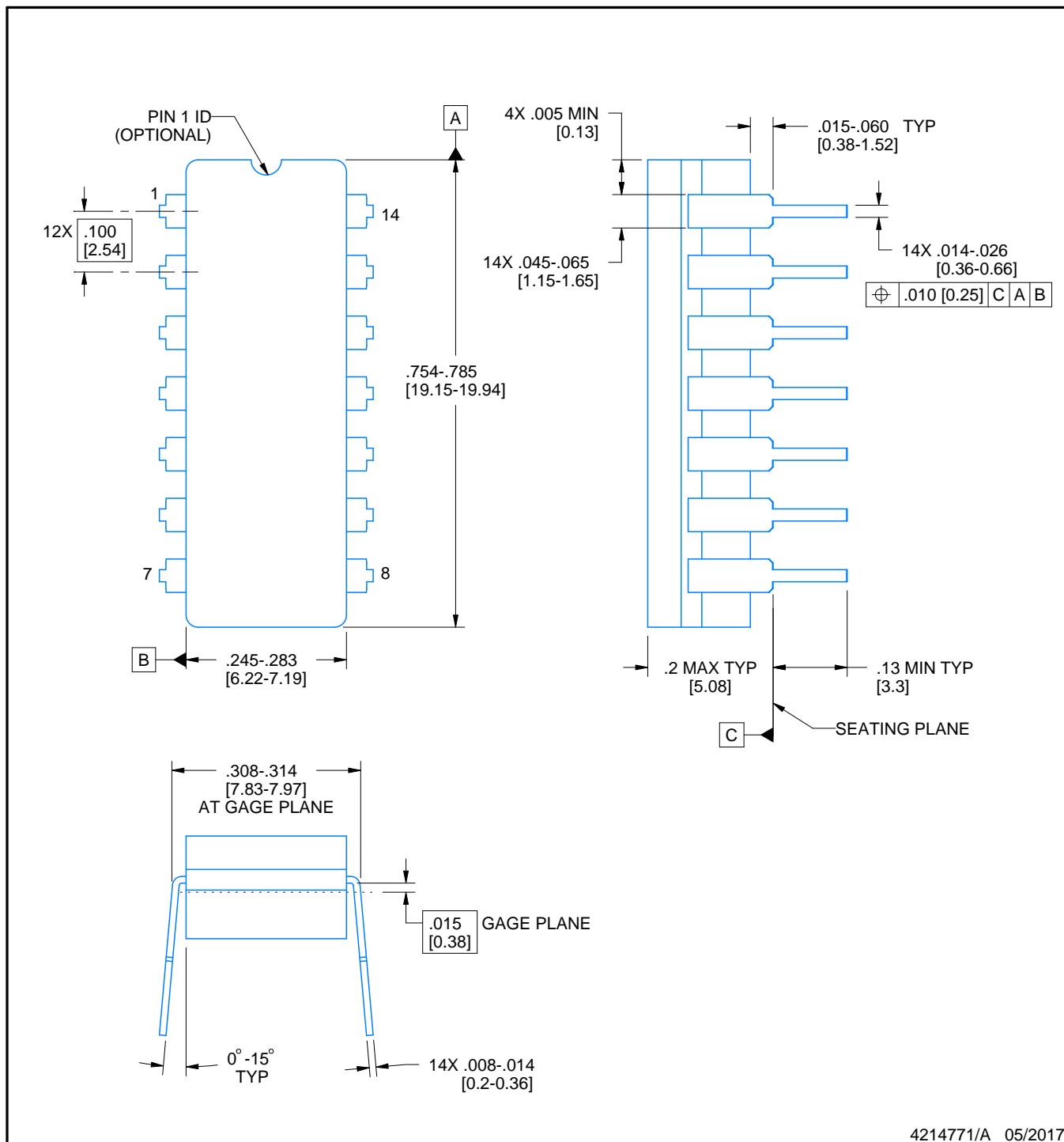
J 14


CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4040083-5/G



PACKAGE OUTLINE

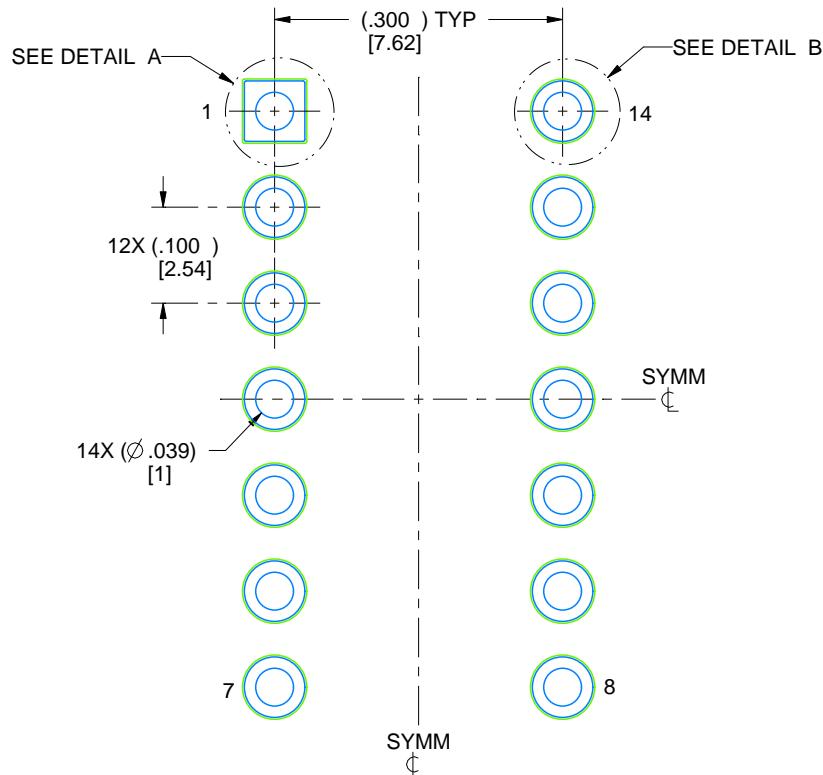
J0014A

CDIP - 5.08 mm max height

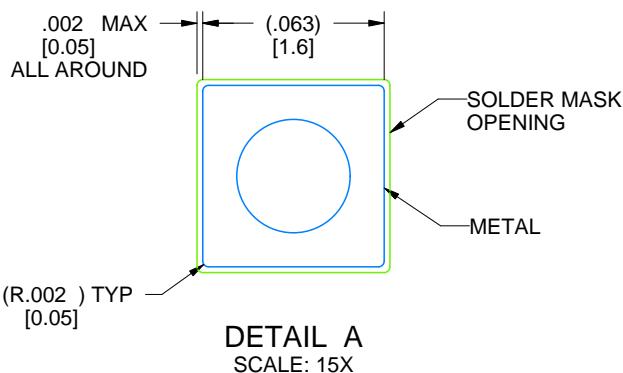
CERAMIC DUAL IN LINE PACKAGE

4214771/A 05/2017

NOTES:


1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is hermetically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
5. Falls within MIL-STD-1835 and GDIP1-T14.

EXAMPLE BOARD LAYOUT



J0014A

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE: 5X

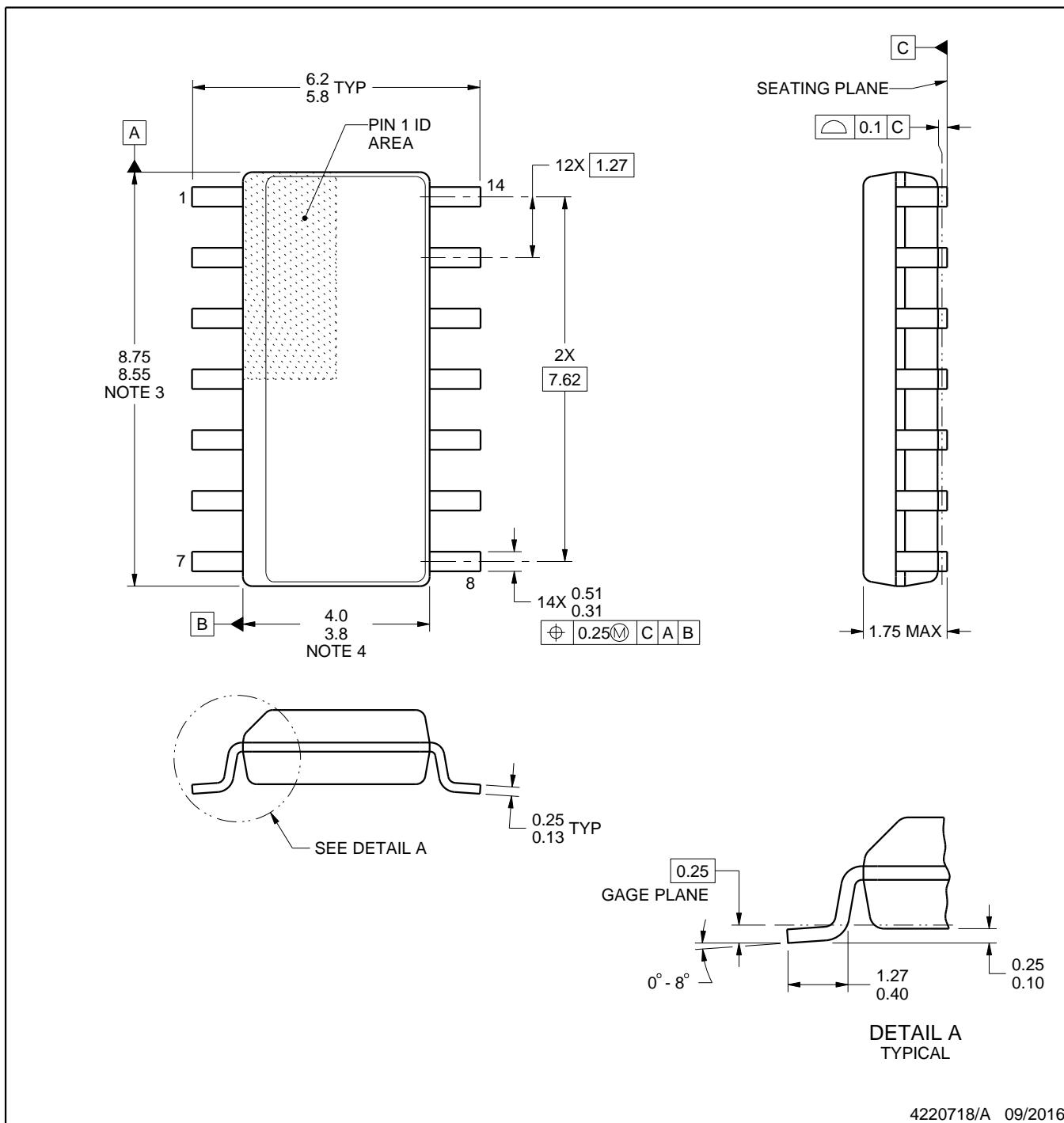


4214771/A 05/2017

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE



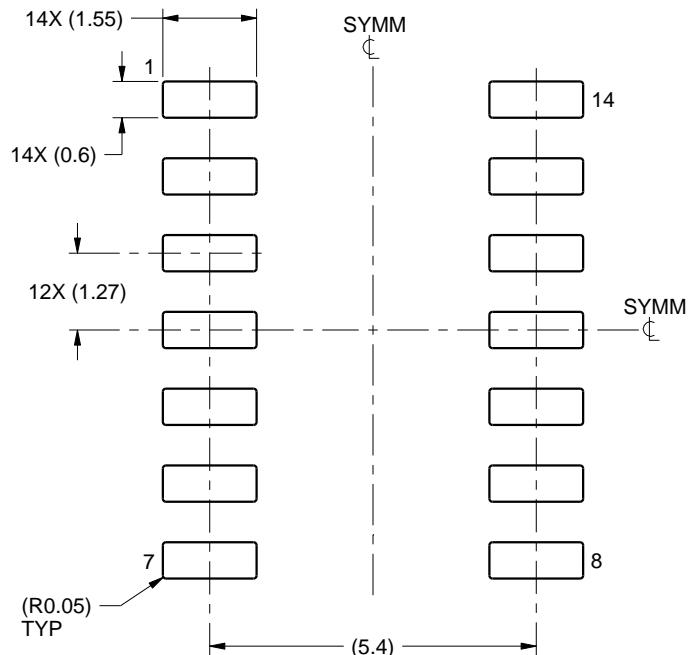
PACKAGE OUTLINE

D0014A

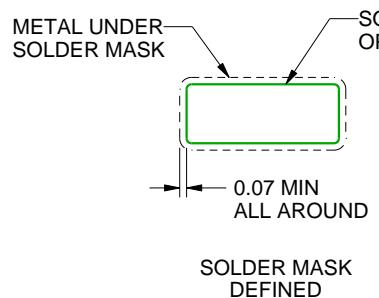
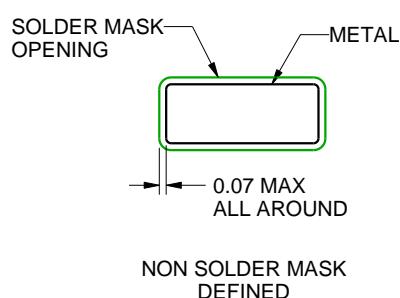
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
5. Reference JEDEC registration MS-012, variation AB.

EXAMPLE BOARD LAYOUT



D0014A

SOIC - 1.75 mm max height

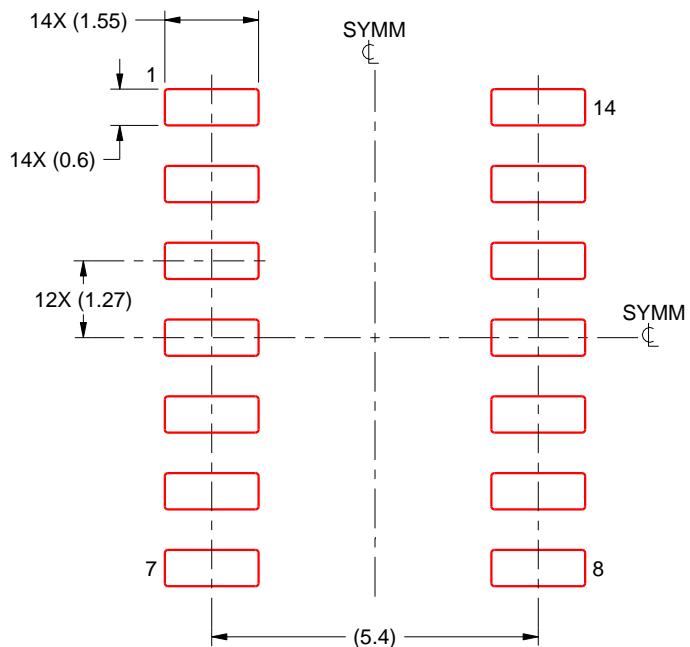
SMALL OUTLINE INTEGRATED CIRCUIT

LAND PATTERN EXAMPLE
SCALE:8X

SOLDER MASK DETAILS

4220718/A 09/2016

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

D0014A

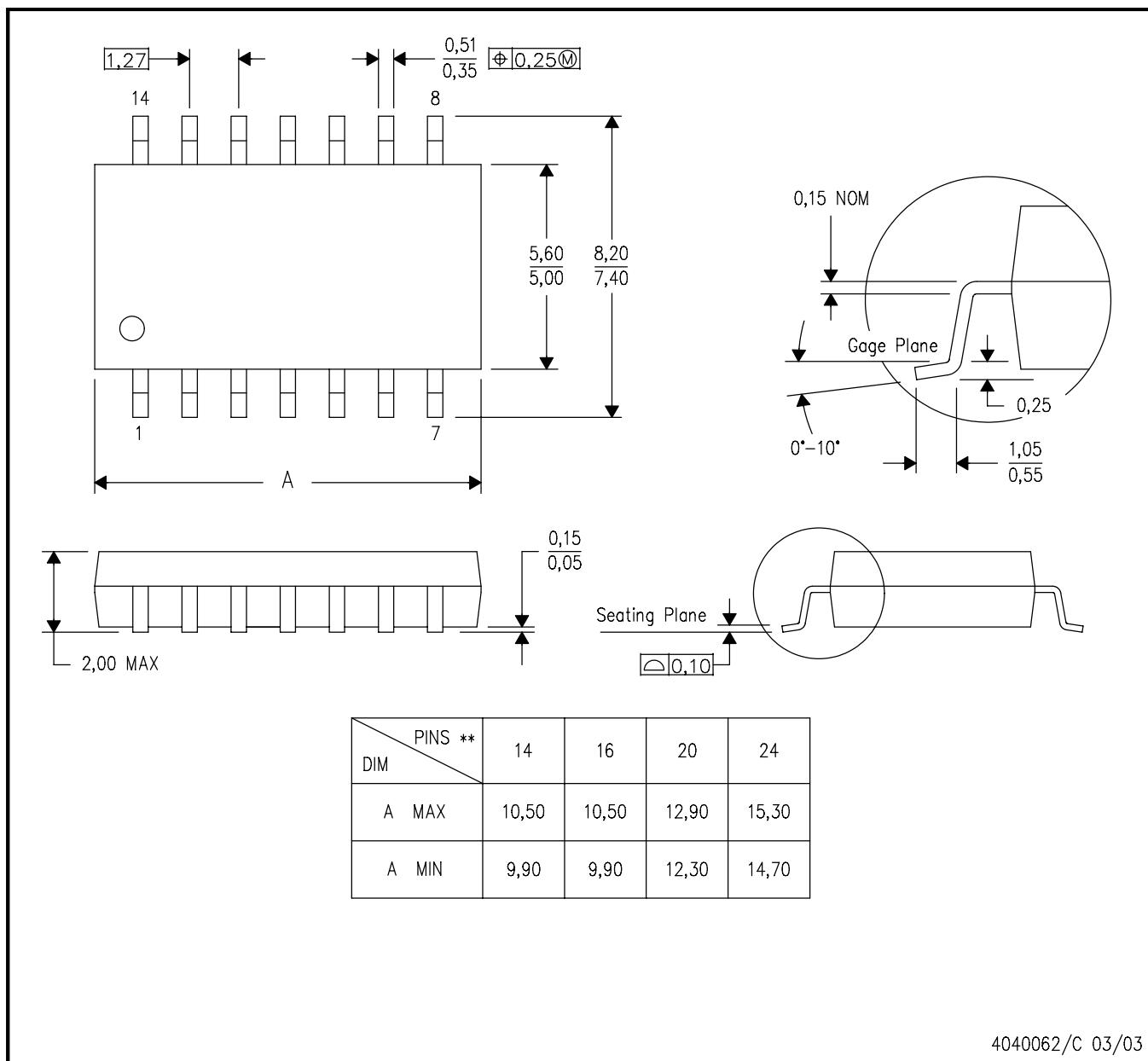
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:8X

4220718/A 09/2016

NOTES: (continued)

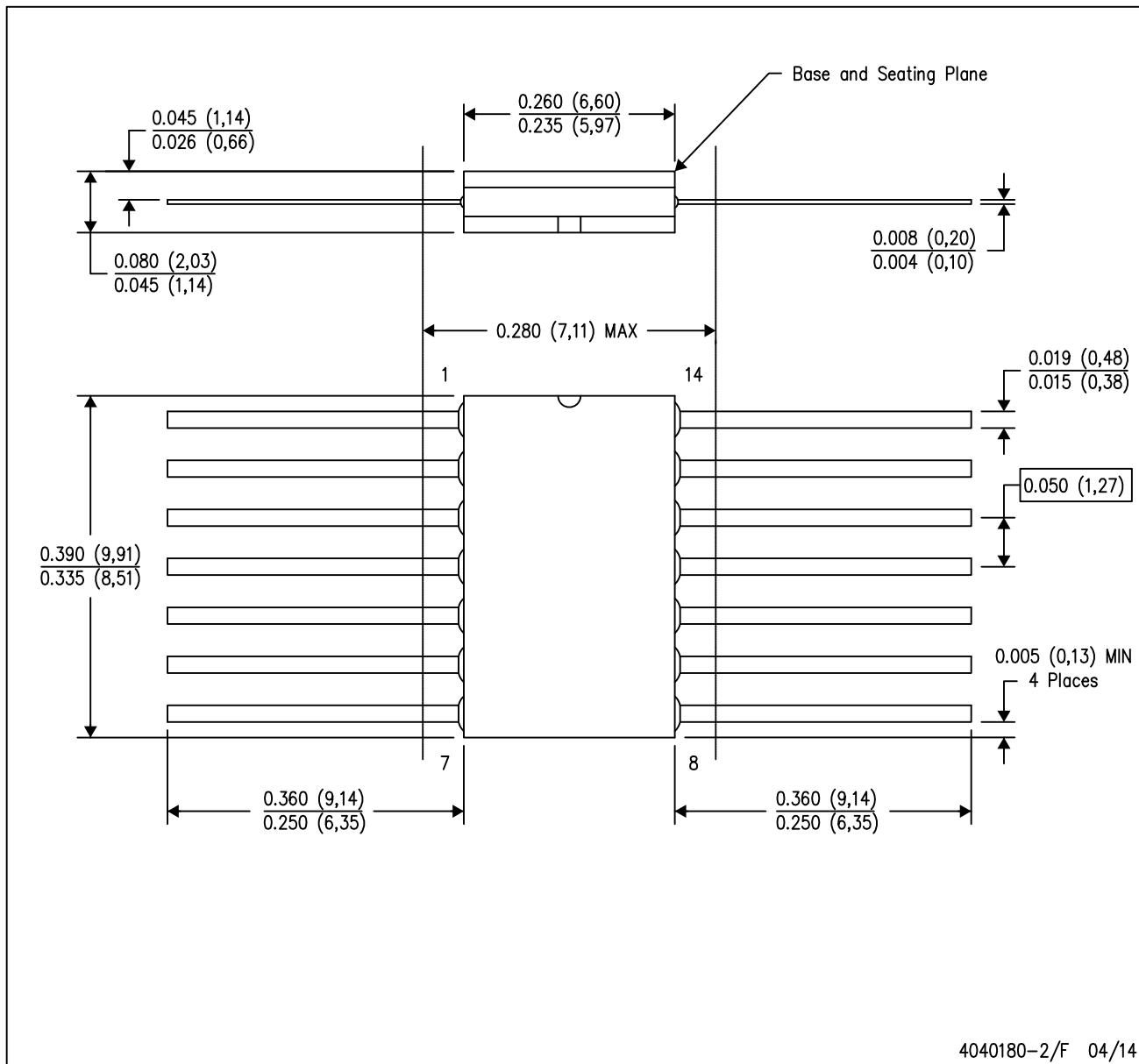

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE



4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL-STD 1835 GDFP1-F14

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated