

LB1870

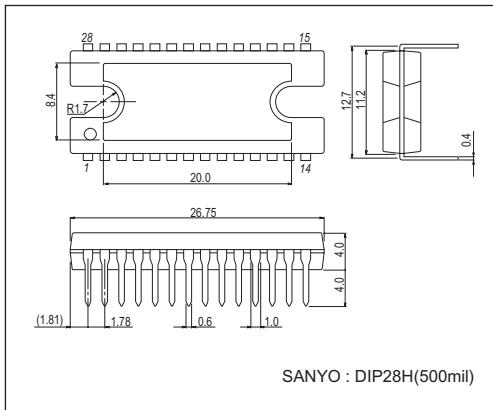
Monolithic Digital IC

LB1870M

Three-Phase Brushless Motor Driver IC

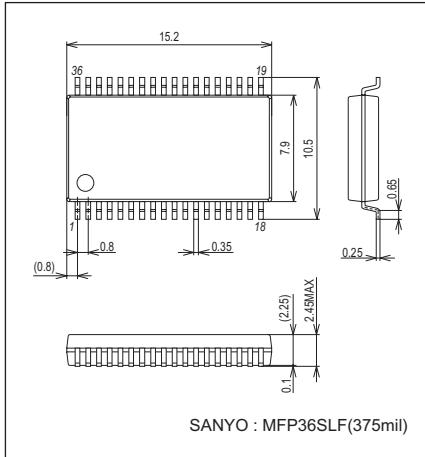
Overview

The LB1870 and LB1870M are three-phase brushless motor driver ICs that are optimal for LBP and LBF polygon mirror motor drive.


Functions and Features

- Single-chip implementation of all circuits required for LBP polygon mirror motor drive (speed control and driver circuits)
- Low motor drive noise level due to the current linear drive scheme implemented by these ICs. Also, small capacitors suffice for motor output oscillation suppression, with certain motors not requiring these capacitors at all.
- Extremely high rotational precision provided by PLL speed control.
- Built-in phase lock detector output
- Four motor speed modes set by switching the clock divider provided under internal clock/crystal oscillator operation. This supports 240, 300, 400 and 480 dpi.
- Use of an external clock allows arbitrary motor speeds.
- Built-in FG and integrating amplifiers
- Full set of built-in protection circuits, including current limiter, undervoltage protection, and thermal protection circuits.

Package Dimensions


unit : mm (typ)

3147C [LB1870]

unit : mm (typ)

3280A [LB1870M]

Specifications

Absolute Maximum Ratings at $T_a = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{CC\ max}$		30	V
Maximum output current	$I_O\ max$	$T < 0.1\text{ s}$	1.0	A
Allowable power dissipation (1)	Pd max1-1	Independent IC (DIP28HS)	3.0	W
	Pd max1-2	Independent IC (MFP36SLF)	0.95	W
Allowable power dissipation (2)	Pd max2	With an arbitrarily large heat sink	20	W
Operating temperature	T_{op}		-20 to +80	$^\circ\text{C}$
Storage temperature	T_{stg}		-55 to +150	$^\circ\text{C}$

SANYO Semiconductor Co., Ltd.

TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

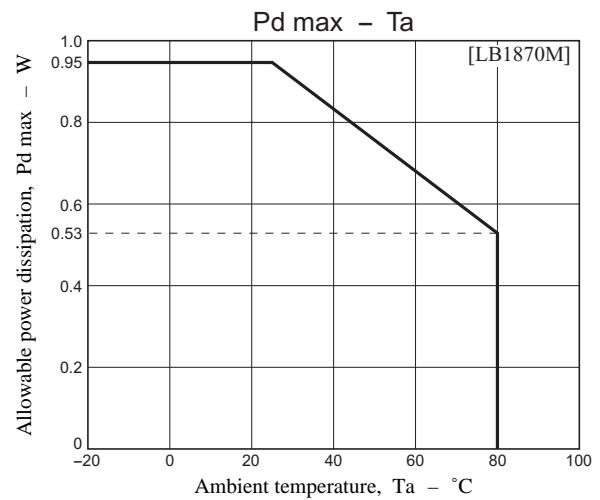
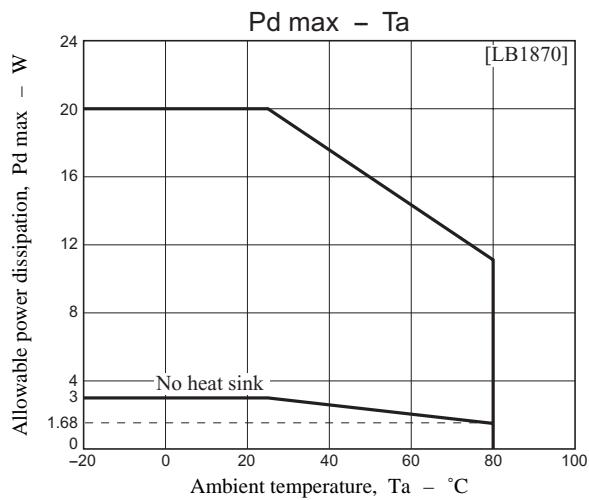
LB1870, 1870M

Allowable Operating Conditions at $T_a = 25^\circ\text{C}$

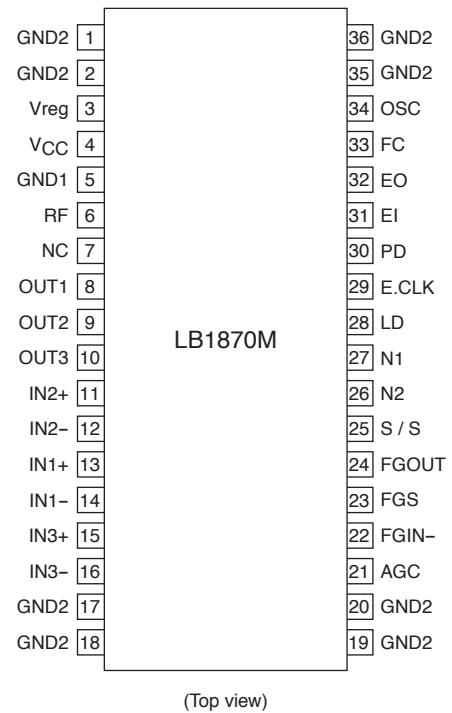
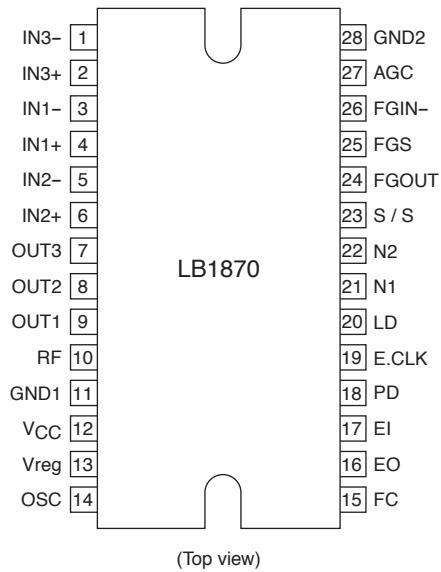
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V_{CC}		20 to 28	V
6.3 V fixed voltage output current	I_{REG}		0 to -15	mA
LD pin voltage	V_{LD}		0 to +28	V
FGS pin voltage	V_{FGS}		0 to +28	V
LD pin output current	I_{LD}		0 to +10	mA
FGS pin output current	I_{FGS}		0 to +5	mA

Electrical Characteristics at $T_a = 25^\circ\text{C}$, $V_{CC} = 24\text{ V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain	I_{CC}	Stop mode		22	32	mA
[Output saturation voltage]: $V_{AGC} = 3.5\text{ V}$						
Source (1)	$V_{sat_{1-1}}$	$I_O = 0.6\text{ A}, R_f = 0\ \Omega$		1.8	2.5	V
Source (2)	$V_{sat_{1-2}}$	$I_O = 0.3\text{ A}, R_f = 0\ \Omega$		1.6	2.3	V
Sink (1)	$V_{sat_{2-1}}$	$I_O = 0.6\text{ A}, R_f = 0\ \Omega$		0.5	1.0	V
Sink (2)	$V_{sat_{2-2}}$	$I_O = 0.3\text{ A}, R_f = 0\ \Omega$		0.25	0.7	V
Output leakage current	$I_O (\text{LEAK})$	$V_{CC} = 28\text{ V}$			100	μA
[6.3 V fixed voltage output]						
Output voltage	V_{REG}		5.8	6.3	6.8	V
Voltage variation	ΔV_{REG1}	$V_{CC} = 20\text{ to }28\text{ V}$			200	mV
Load variation	ΔV_{REG2}	$I_O = 0\text{ to }-10\text{ mA}$			200	mV
Temperature coefficient	ΔV_{REG3}	Design target value		0		$\text{mV}/^\circ\text{C}$
Short circuit current	ISV_{REG}	Design target value		70		mA
[Hall input block]						
Input bias current	$I_B (\text{HA})$			2	10	μA
Differential input range	V_{HIN}	Sine wave input	50		350	mVp-p
Common-mode input range	V_{ICM}	Differential input: 50 mVp-p	3.5		$V_{CC} - 3.5$	V
Input offset voltage	V_{IOH}		-20		+20	mV
[Undervoltage protection]						
Operating voltage	V_{SD}		8.4	8.8	9.2	V
Hysteresis	ΔV_{SD}		0.2	0.4	0.6	V
[Thermal protection]						
Thermal shutdown operating temperature	T_{SD}	Design target value (junction temperature)	150	180		$^\circ\text{C}$
Hysteresis	ΔT_{SD}	Design target value (junction temperature)		40		$^\circ\text{C}$
[Current limiter operation]						
Limiter	V_{RF}		0.52	0.58	0.63	V
[FG amplifier]						
Input offset voltage	$V_{IO} (\text{FG})$	Design target value	-10		+10	mV
Input bias current	$I_B (\text{FG})$		-1		+1	μA
DC bias level	$V_B (\text{FG})$		-5%	$1/2 V_{REG}$	+5%	V
Output high level voltage	$V_{OH} (\text{FG})$	No external load	$V_{REG} - 1.3$	$V_{REG} - 0.8$		V
Output low level voltage	$V_{OL} (\text{FG})$	No external load		0.8	1.2	V
[FG Schmitt block]						
Input hysteresis (high to low)	V_{SHL}			0		mV
Input hysteresis (low to high)	V_{SLH}			150		mV
Hysteresis	V_{FGL}		100		200	mV
Input operating level	V_{FGSIL}		400			mVp-p
Output saturation voltage	$V_{FGS} (\text{sat})$	$I_{FGS} = 4\text{ mA}$		0.2	0.4	V
Output leakage current	$I_{FGS} (\text{LEAK})$	$V_{CC} = 28\text{ V}$			10	μA

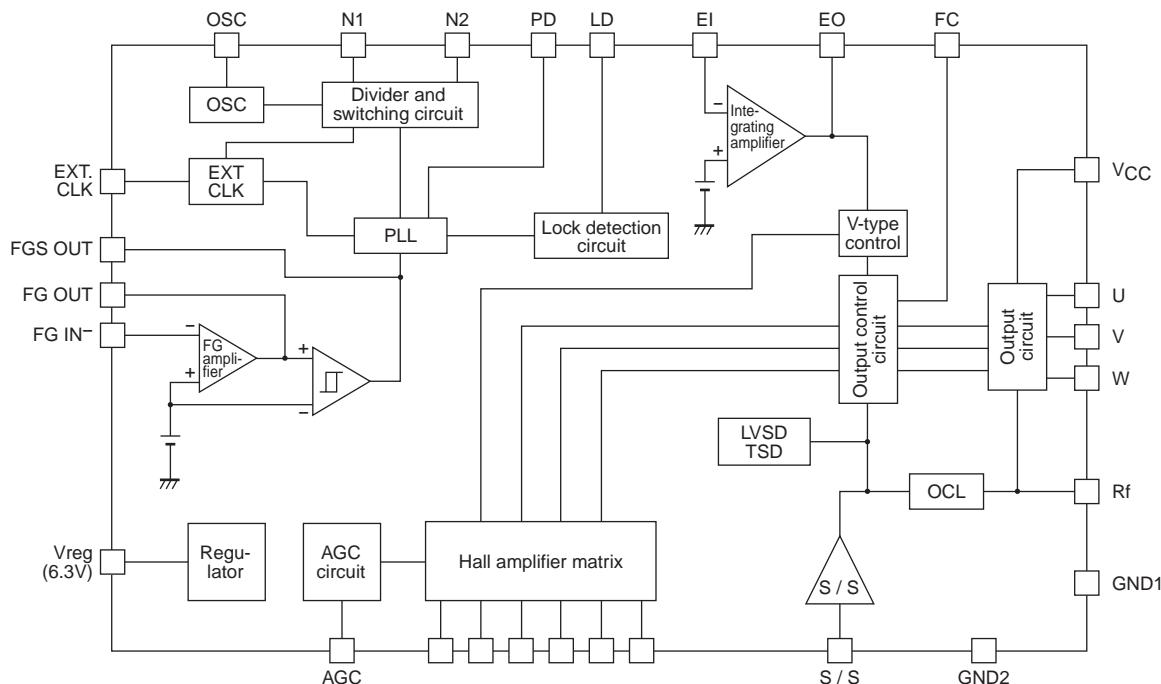


Continued on next page.

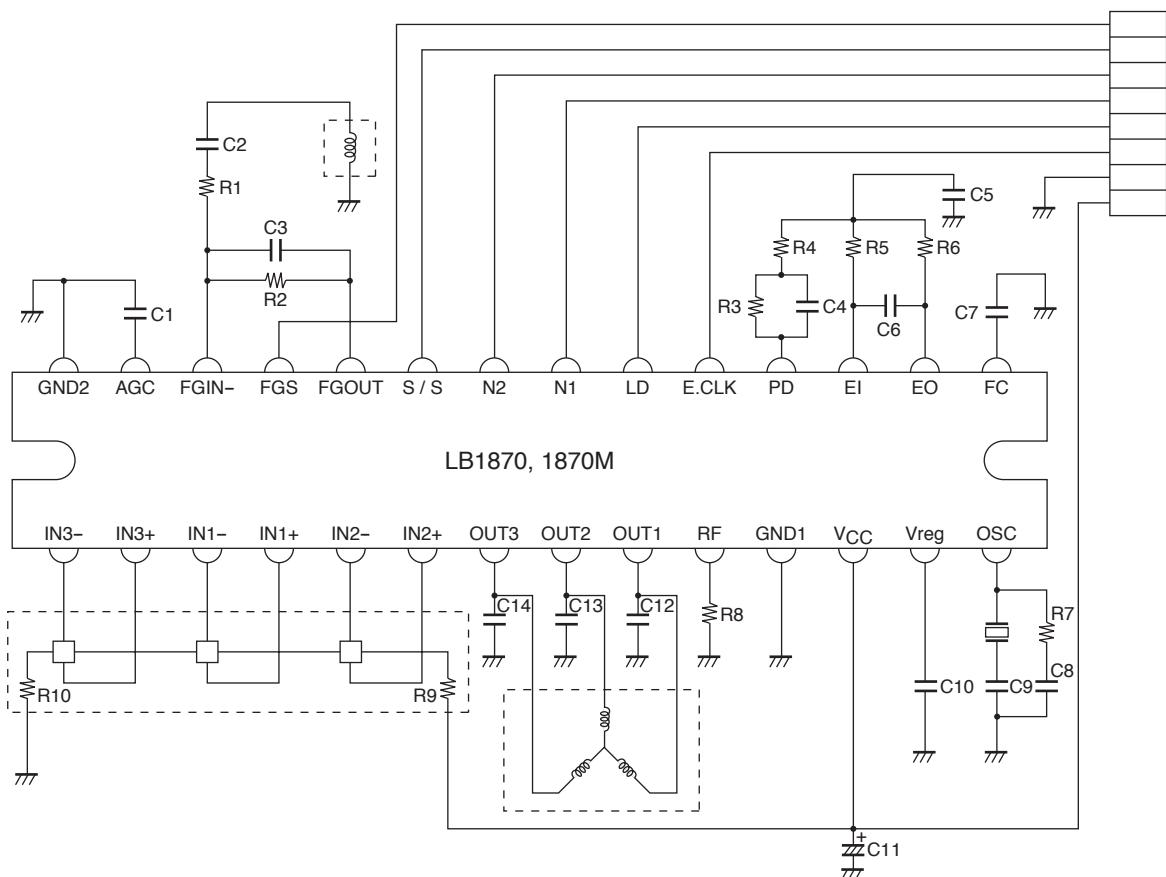
LB1870, 1870M



Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
[Error amplifier]						
Input offset voltage	V_{IO} (ER)	Design target value	-10		+10	mV
Input bias current	I_B (ER)		-1		+1	μA
DC bias level	V_B (ER)		-5%	$1/2 V_{REG}$	+5%	V
Output high level voltage	V_{OH} (ER)	No external load	$V_{REG} - 1.0$			V
Output low level voltage	V_{OL} (ER)	No external load			1.0	V
[Phase comparator output]						
Output high level voltage	V_{PDH}	No external load	$V_{REG} - 0.4$			V
Output low level voltage	V_{PDL}	No external load			0.4	V
Output source current	I_{PD}^+	$V_{PD} = V_{REG}/2$			-0.6	mA
Output sink current	I_{PD}^-	$V_{PD} = V_{REG}/2$	1.5			mA
[Lock detector output]						
Output saturation voltage	V_{LD} (sat)	$I_{LD} = 5 \text{ mA}$		0.1	0.4	V
Output leakage current	I_{LD} (LEAK)	$V_{CC} = 28 \text{ V}$			10	μA
[Drive block]						
Dead zone	V_{DZ}		50	100	300	mV
Output idling voltage	V_{ID}				6	mV
Forward gain	G_{DF}^+		0.4	0.5	0.6	
Reverse gain	G_{DF}^-		-0.6	-0.5	-0.4	
Accelerate command voltage	V_{STA}		5.0	5.6		V
Decelerate command voltage	V_{STO}			0.8	1.5	V
Forward limiter voltage	V_L^+	$R_f = 22 \Omega$		0.58		V
Reverse limiter voltage	V_L^-	$R_f = 22 \Omega$		0.58		V
[Reference signal block]						
Crystal oscillator frequency	f_{OSC}	Crystal oscillator mode	1		8	MHz
Low level pin voltage	V_{OSCL}	$I_{OSC} = -0.5 \text{ mA}$		4.4		V
High level pin voltage	I_{OSCH}	$V_{OSC} = V_{OSCL} + 0.3 \text{ V}$		0.5		mA
[External clock input block]						
External input frequency	f_{CLK}	External clock mode	500		7000	Hz
Input high level voltage	V_{IH} (CLK)		3.5		V_{REG}	V
Input low level voltage	V_{IL} (CLK)		0		+1.5	V
Input open voltage	V_{IO} (CLK)		3.5	4.0	4.7	V
Hysteresis	V_{IS} (CLK)		0.27	0.4	0.53	V
Input high level current	I_{IH} (CLK)	$V_{(CLK)} = V_{REG}$		155	200	μA
Input low level current	I_{IL} (CLK)	$V_{(CLK)} = 0 \text{ V}$	-400	-300		μA
[N1 pin]						
Input high level voltage	V_{IH} (N1)		3.5		V_{REG}	V
Input low level voltage	V_{IL} (N1)		0		+1.5	V
Input open voltage	V_{IO} (N1)		3.5	4.0	4.7	V
Input high level current	I_{IH} (N1)	$V_{(N1)} = V_{REG}$		155	200	μA
Input low level current	I_{IL} (N1)	$V_{(N1)} = 0 \text{ V}$	-400	-300		μA
[N2 pin]						
Input high level voltage	V_{IH} (N2)		4.0		V_{REG}	V
Input middle level voltage	V_{IM} (N2)		2.0		3.0	V
Input low level voltage	V_{IL} (N2)		0		+1.0	V
Input open voltage	V_{IO} (N2)		3.5	4.0	4.7	V
Input high level current	I_{IH} (N2)	$V_{(N2)} = V_{REG}$		155	200	μA
Input low level current	I_{IL} (N2)	$V_{(N2)} = 0 \text{ V}$	-400	-300		μA
[S/S pin]						
Input high level voltage	V_{IH} (S/S)		3.5		V_{REG}	V
Input low level voltage	V_{IL} (S/S)		0		+1.5	V
Input open voltage	V_{IO} (S/S)		3.5	4.0	4.7	V
Hysteresis	V_{IS} (S/S)		0.27	0.4	0.53	V
Input high level current	I_{IH} (S/S)	$V_{(S/S)} = V_{REG}$		155	200	μA
Input low level current	I_{IL} (S/S)	$V_{(S/S)} = 0 \text{ V}$	-400	-300		μA

LB1870, 1870M

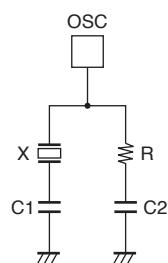

Pin Assignments


Pin Functions

Symbol	Function	Notes
IN1 to 3+, IN1 to 3-	Hall element input	Taken as high when $IN^+ > IN^-$, and as low otherwise.
OUT1 to 3	Outputs	Capacitors are inserted between these pins and ground.
GND1	Sub-ground	Output block ground. Connect to GND2.
GND2	Ground	Ground for circuits other than the output block.
R_f	Output current detection	Connect a small resistor between this pin and ground. Set the maximum output current so that $I_{OUT} = 0.58/R_f$.
V_{CC}	Power supply	
V_{REG}	Power supply stabilization output	Connect a capacitor between this pin and GND2. Internal circuit power supply stabilization.
OSC	Crystal oscillator	8 MHz max
E. CLK	External clock	7 kHz max
FC	Control amplifier frequency correction	Connect a capacitor between this pin and GND2.
EI	Error amplifier input	
EO	Error amplifier output	
LD	Phase lock detector output	On when the PLL phase is locked. This pin is an open collector output.
PD	Phase comparator output	PLL phase comparator output
N1, N2	Divisor switching	
S/S	Start/stop	Start on low. Stop on high or open.
FGS	FG pulse output	Pulse output following the FG Schmitt comparator. This pin is an open-collector output.
FG OUT	FG amplifier output	A minimum amplitude of 400 mVp-p is required.
FG IN-	FG amplifier input	
AGC	AGC amplifier frequency characteristics correction	Connect a capacitor between this pin and GND2.

Equivalent Circuit Block Diagram

Sample Application Circuit



Clock Divisor Switching

Pin N1	Pin N2	Divisor
H	H	2560 ($5 \times 1 \times 512$)
L	H	5120 ($5 \times 2 \times 512$)
H	L	4096 ($4 \times 2 \times 512$)
L	L	3072 ($3 \times 2 \times 512$)
—	M	EXT. CLK

Note: An open input is taken as a high level input.

PLL servo frequency = (crystal oscillator frequency)/(divisor)

Crystal Oscillator Usage

External Component Values (reference values)

Crystal (MHz)	C1 (pF)	C2 (pF)	R (kΩ)
3 to 4	39	82	0.82
4 to 5	39	82	1.0
5 to 7	39	47	1.5
7 to 10	39	27	2.0

Note: Use a crystal that has a ratio of at least 1:5 between the fundamental f0 impedance and the 3f0 impedance.

Three Phase Logic Truth Table

H1	H2	H3	OUT1	OUT2	OUT3
H	L	H	L	H	M
H	L	L	L	M	H
H	H	L	M	L	H
L	H	L	H	L	M
L	H	H	H	M	L
L	L	H	M	H	L

Columns H1 to H3

H: $H^+ > H^-$

L: $H^+ < H^-$

Columns OUT1 to OUT3

H: Source

L: Sink

LB1870 Functional Description and External Components**1. Speed control circuit**

This IC provides high-precision stable motor control with minimal jitter by adopting a PLL speed control scheme. This PLL circuit compares the rising edge of the CLK signal with the falling edge of the FG Schmitt output and outputs that phase error.

When an internal clock is used, the FG servo frequency is determined by the formula shown below. Thus the motor speed is determined by the number of FG pulses and the crystal oscillator frequency.

$$f_{FG(\text{servo})} = f_{\text{OSC}}/N$$

f_{OSC} : Crystal oscillator frequency

N: Clock divisor

2. Three-phase full-wave current linear drive

This IC adopts a three-phase full-wave current linear drive to hold motor noise to an absolute minimum. When switching the output transistor phase, it creates a two-phase excitation state, suppresses kickback, and smooths the output waveform. This suppresses motor noise. Note that since oscillation may occur with some motors, the capacitors C12, C13, and C14 (about 0.1 μF) are connected between the OUT pins and ground.

3. Current limiter circuit

The current limiter circuit limits the current (i.e., the peak current) to a level determined by the formula $I = 0.58/R_f$. A scheme in which the output stage drive current is limited is adopted for the limiting operation. Therefore, the phase compensation capacitor C7 (about 0.1 μF) is inserted between FC and ground.

4. Grounding

GND1 (pin 11 in the LB1870, pin 5 in the LB1870M)Output block ground (sub-ground)
GND2 (pin 28 in the LB1870, pins 1, 2, 17 to 20, 35, and 36 in the LB1870M) ..Control circuit ground.

GND1 and GND2 should be connected on the circuit board by the shortest distance that occurs in the pattern. Also, the R_f resistor R8 ground node and the GND1 and GND2 pattern line should be grounded to a single point on the connector.

5. External interface pins**• LD pin**

Output type: open collector

Breakdown voltage: 30 V absolute maximum

Saturation voltage manufacturing variation reference value ($I_{LD} = 10 \text{ mA}$): 0.10 to 0.15 V

• FGS pin

Output type: open collector

Breakdown voltage: 30 V absolute maximum

Saturation voltage manufacturing variation reference value ($I_{FGS} = 4 \text{ mA}$): 0.15 to 0.30 V

A hysteresis comparator converts the FG amplifier output to a pulse signal to create the FGS output, which is used for speed monitoring. The pull-up resistor is not required if this pin is not used.

• S/S pin (start/stop pin)

Input type: A pnp transistor whose base is pulled up to the internal 6.3 V power supply through a $23 \text{ k}\Omega$ resistor, and is pulled down to ground through a $40 \text{ k}\Omega$ resistor.

Threshold level (low \rightarrow high): about 2.8 V

Threshold level (high \rightarrow low): about 2.4 V

The LB1870 goes to stop mode with this pin in the open state.

• CLK input pin

Input type: A pnp transistor whose base is pulled up to the internal 6.3 V power supply through a $23 \text{ k}\Omega$ resistor, and is pulled down to ground through a $40 \text{ k}\Omega$ resistor.

Threshold level (low \rightarrow high): about 2.8 V

Threshold level (high \rightarrow low): about 2.4 V

• N1 pin

Input type: A pnp transistor whose base is pulled up to the internal 6.3 V power supply through a $23 \text{ k}\Omega$ resistor, and is pulled down to ground through a $40 \text{ k}\Omega$ resistor.

Threshold level (typical): about 2.6 V

• N2 pin

Input type: The base of a pnp transistor is pulled up to the internal 6.3 V power supply through a $23 \text{ k}\Omega$ resistor, and is pulled down to ground through a $40 \text{ k}\Omega$ resistor.

Threshold level (low \rightarrow high): about 1.5 V

Threshold level (high \rightarrow low): about 3.6 V

6. FG amplifier

R1 and R2 determine the FG amplifier gain, with the DC gain G being $R2/R1$. C2 and C3 determine the FG amplifier frequency characteristics, with R1 and C2 forming a high-pass filter and R2 and C3 forming a low-pass filter. Since a Schmitt comparator follows the FG amplifier directly, R1, R2, C2, and C3 must be chosen so that the FG amplifier output is at least 400 mVp-p. (It is desirable for the FG amplifier output to be set up to be between 1 and 3 V during steady state rotation.) The FG amplifier is often the cause when capacity becomes a problem in noise evaluation. One solution to that problem is to insert a capacitor of between 1000 pF and 0.1 μF between FG OUT pin and ground.

7. External capacitors**• C1**

C1 is the AGC (automatic gain control) pin smoothing capacitor. This pin is an automatic gain control pin for holding the hall amplifier output amplitude fixed. This pin outputs the three-phase hall signal envelope, and is smoothed with a capacitor (about 0.1 μF) since it has ripple. When the hall input amplitude is small, the AGC pin potential will rise, and when the input amplitude is large, the AGC pin potential will fall.

• C10

C10 is required for fixed voltage power supply stability. Since the output from the 6.3 V fixed voltage power supply is supplied to all circuits within the IC, noise on this signal must be avoided. This power supply must be adequately stabilized so that malfunctions due to noise do not occur.

• C11

C11 is required for V_{CC} stabilization. Since, just as with C10, noise must be avoided, this capacitor is provided to adequately stabilize the power supply. The length of the pattern lines used to connect capacitors C1, C10, and C11 between their respective pins and GND2 must be kept as short as possible. C10 and C11 require special care, since the pattern line length can easily influence their characteristics.

8. Oscillator pin

A crystal oscillator and an RC circuit is connected to the LB1870's OSC pin. To avoid problems when selecting the oscillator and the capacitor and resistor values, confirm these values with the oscillator's manufacturer. The pnp transistor and resistor circuit shown in the figure can be used to apply an external signal (of a few MHz) to the OSC pin.

$f_{in} = 1$ to 8 MHz

Input signal level: High level voltage: 4.0 V minimum

Low level voltage: 1.5 V maximum

It will be necessary to insert a capacitor of a certain size if there is overshoot or undershoot in the input waveform. Contact your Sanyo representative for more information on this point if necessary.

$V_{DD} = 6.3$ V typ. (5.8 to 6.8 V)	$R_a = 4.7$ k Ω	$R_b = 1.3$ k Ω
$V_{DD} = 5.0$ V typ. (4.5 to 5.5 V)	$R_a = 2.0$ k Ω	$R_b = 1.0$ k Ω

Use the LB1870 V_{REG} output for the $V_{DD} = 6.3$ V case.

9. IC internal power dissipation calculation example (calculated at $V_{CC} = 24$ V, standard ratings)

- Power dissipation due to current drain

$$P1 = V_{CC} \times I_{CC} = 24 \text{ V} \times 22 \text{ mA} = 0.53 \text{ W}$$

- Power dissipation when a -10 mA load current is drawn from the 6.3 V fixed voltage power supply.

$$P2 = (V_{CC} - V_{REG}) \times I_{load} = 17.7 \text{ V} \times 10 \text{ mA} = 0.18 \text{ W}$$

- Power dissipation due to the output drive current

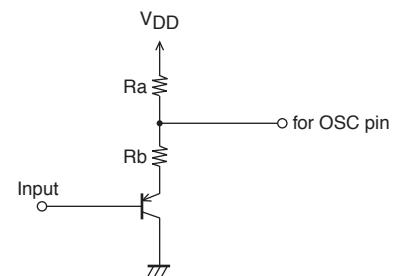
(When $I_O = 0.1$ A, the inter-coil voltage $V_{Rm} = Rm \times I_O$, and the reverse voltage = 15 V)

$$\begin{aligned} P3 &= (I_O/100) \times [(V_{CC} - 0.7 \text{ V}) + ((V_{CC} - V_{Rm})/2) - 0.7 \text{ V}] + V_{CC}^2/16 \text{ k}\Omega \\ &= 1 \text{ mA} \times (23.3 \text{ V} + 3.8 \text{ V}) + 24 \text{ V}^2/16 \text{ k}\Omega = 0.06 \text{ W} \end{aligned}$$

- Power dissipation due to the output transistor

(When $I_O = 0.1$ A, the inter-coil voltage $V_{Rm} = Rm \times I_O$, and the reverse voltage = 15 V)

$$P4 = (V_{CC} - V_{Rm}) \times I_O = 9 \text{ V} \times 0.1 \text{ A} = 0.9 \text{ W}$$


Therefore, the IC's total power dissipation is:

In stop mode:

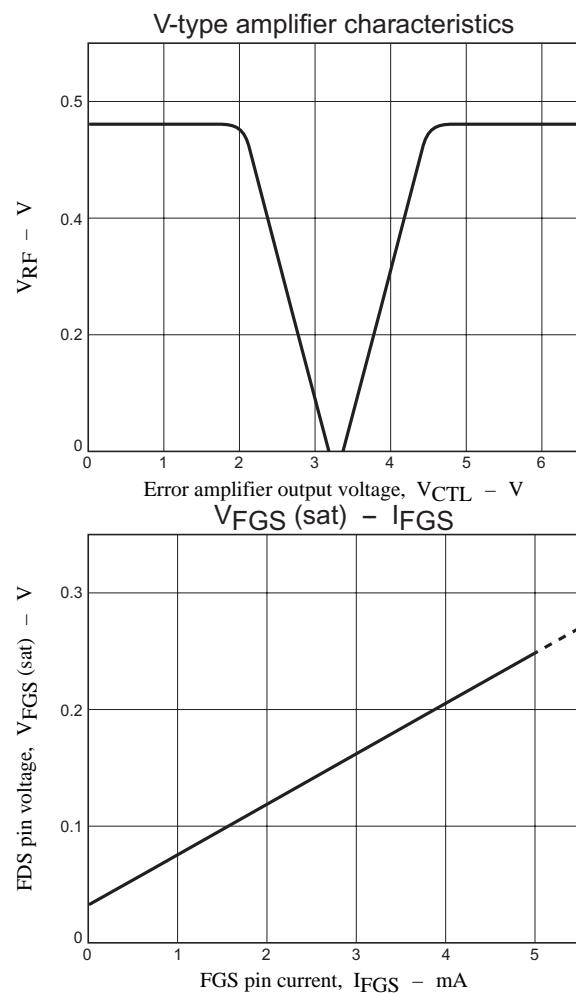
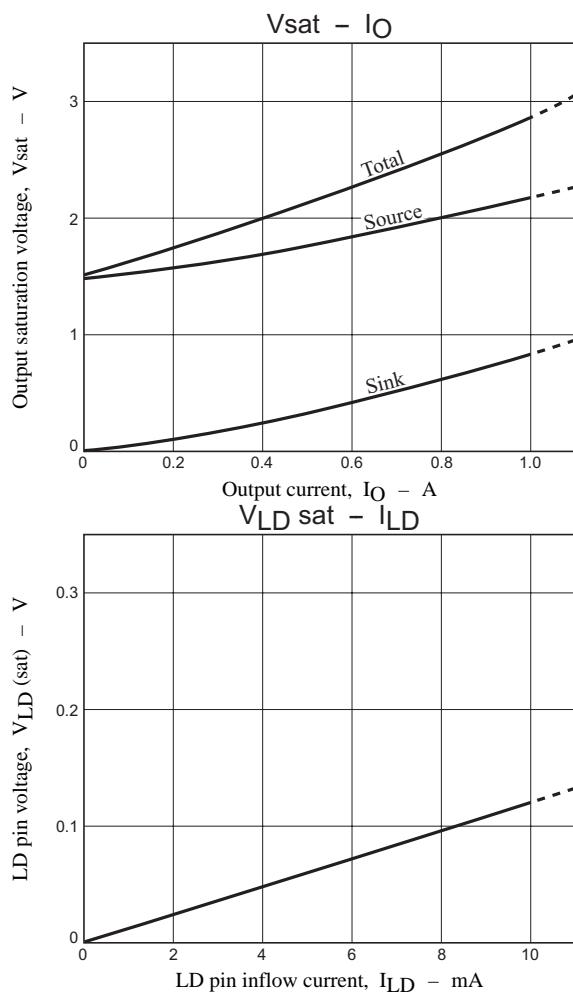
$$P = P1 + P2 = 0.71 \text{ W}$$

In start mode (When $I_O = 0.1$ A, the inter-coil voltage $V_{Rm} = Rm \times I_O$, and the reverse voltage = 15 V)

$$P = P1 + P2 + P3 + P4 = 1.67 \text{ W}$$

10. Measuring the IC's temperature rise

• Thermocouple measurement



When using a thermocouple for temperature measurement, attach the thermocouple to a heat sink fin. This temperature measurement technique is straightforward. However, a large measurement error occurs when the heat generation is not in a steady state.

• Measurement using IC internal diode characteristics

We recommend using the parasitic diode that exists between LD and ground in this IC. Remove the external resistor when measuring. (Sanyo data indicates that $I_{LD} = -1$ mA, about -1.9 mV/°C, when the LD pin is high.)

11. Servo constants

The servo constant calculation varies significantly with the motor used, and requires specialized know-how. Thus this should be handled by the motor manufacturer. Sanyo can provide the required IC characteristics data for servo constant calculation, and the motor manufacturer should provide the frequency characteristics simulation data for the specified filter characteristics.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of April, 2007. Specifications and information herein are subject to change without notice.