

Thin Film Surface Mounted RF Capacitor

Product may not be to scale

RFCS series of thin film capacitors on silicon are designed for RF circuits that require exceptional performance at frequencies up to 20 GHz. The unique structure of the RFCS capacitors is based on thin-film electrodes deposited on a highly conductive silicon substrate. This unique structure is characterized by low parasitic inductance allowing the capacitors to maintain their performance to higher frequencies than other technologies.

The RFCS replaces the HPC product line. Additional values and form factors available upon request.

FEATURES

- · Industries highest SRF
- · Low DCR, high Q
- Small size: 0.040" x 0.020" x 0.015"
- S parameter files available upon request
- High frequency up to 20 GHz
- Surface mount
- Case size: 0402

APPLICATIONS

- · Lumped element filters
- · Impedance matching circuits
- Decoupling and DC blocking
- Smart cards
- · Other high Q RF circuitry

WV (DC) VALUES AND TOLERANCES			
CAPACITOR MODEL	RCFS	UNIT	
Case Size	0402		
Capacitance Values	0.2 to 27	pF	
Tolerance (1)	± 5	%	
DC Working Voltage	50	V	

Note

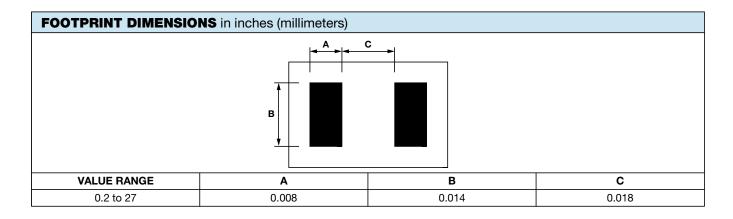
 $^{(1)}$ ± 0.1 pF for values < 2 pF

STANDARD ELECTRICAL SPECIFICATIONS			
PARAMETER	VALUE	UNIT	
Capacitance Range (2)	0.2 to 27	pF	
Maximum Working Voltage	Up to 50	V	
Operating Temperature	- 55 to + 125	°C	
Storage Temperature	- 55 to + 125	°C	
Temperature Coefficient	± 100	ppm/°C	
ESD Classification (3)	Value dependant, up to class 2		

Notes

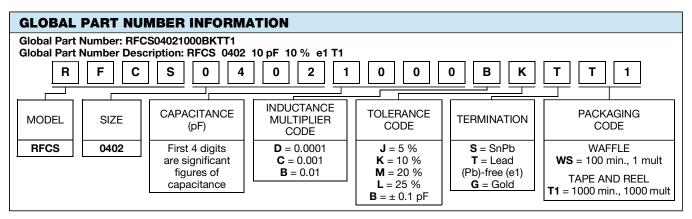
- (2) Custom values available upon request. See custom design section below
- (3) According to AEC-Q200 method 002. Contact factory for more details

RF CHARACTERISTICS - typical values				
CAPACITANCE (pF)	Q		SRF	MAX. OPERATING VOLTAGE
AT 1 MHz	100 MHz	1 GHz	(GHz)	(V)
0.2	70 500	3190	> 20	50
0.3	45 700	2050	> 20	50
0.4	33 600	1490	19.4	50
0.5	26 500	1170	18.2	50
0.6	21 800	960	17.2	50
0.7	18 500	810	16.5	50
0.8	16 000	700	15.8	50

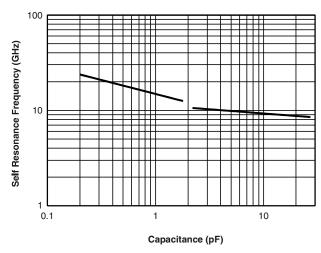


www.vishay.com

Vishay Electro-Films

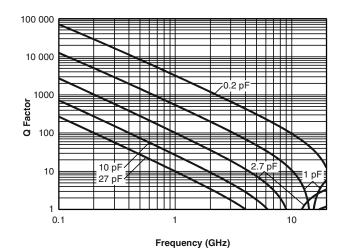

CAPACITANCE Q (pF)		SRF	MAX. OPERATING VOLTAGE	
AT 1 MHz	100 MHz	1 GHz	(GHz)	(V)
0.9	14 100	610	15.3	50
1	12 600	540	14.9	50
1.2	10 400	450	14.1	50
1.5	8170	350	13.2	50
1.8	6720	290	12.5	50
2.2	3360	130	10.6	50
2.7	2720	100	10.4	50
3.3	2220	80	10.2	25
3.9	1870	70	10.1	25
4.7	1540	60	9.9	25
5.6	1290	50	9.8	25
6.8	1060	40	9.6	25
8.2	870	30	9.4	25
10	710	25	9.3	25
12	600	21	9.1	16
15	470	20	8.9	16
18	400	15	8.8	16
22	320	10	8.6	10
27	260	10	8.5	10

DIMENSIONS in inches (millimeters)			
	LENGTH	WIDTH	THICKNESS
PART	0.04	0.02	0.015 (0.5) ± 0.001
Mounting Pad C ≥ 2.2 pF	0.014	0.006	
Mounting Pad C < 2.2 pF	0.012	0.004	



CUSTOM DESIGNED CAPACITORS

Vishay EFI will custom design and measure additional values and form factors upon request. Typical capacitance density is limited to: $\sim 200 \text{ pF/mm}^2$



TYPICAL COMPONENT PERFORMANCE

Self Resonance vs. Value

Two electrode geometries are used to cover the value range. For this reason the above plot exhibits discontinuity.

Quality Factor vs. Frequency

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.