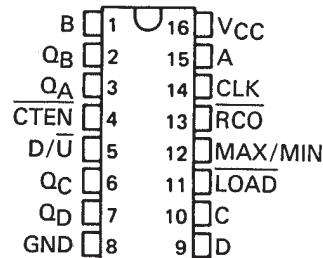


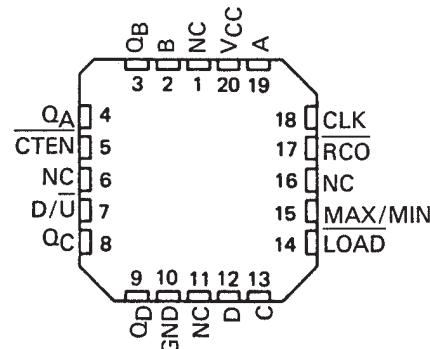
SN54190, SN54191, SN54LS190, SN54LS191,
 SN74190, SN74191, SN74LS190, SN74LS191
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL
 SDLS072 – DECEMBER 1972 – REVISED MARCH 1988

- Counts 8-4-2-1 BCD or Binary
- Single Down/Up Count Control Line
- Count Enable Control Input
- Ripple Clock Output for Cascading
- Asynchronously Presettable with Load Control
- Parallel Outputs
- Cascadable for n-Bit Applications


TYPE	TYPICAL		
	AVERAGE PROPAGATION DELAY	MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'190, '191	20ns	25MHz	325mW
'LS190, 'LS191	20ns	25MHz	100mW

description

The '190, 'LS190, '191, and 'LS191 are synchronous, reversible up/down counters having a complexity of 58 equivalent gates. The '191 and 'LS191 are 4-bit binary counters and the '190 and 'LS190 are BCD counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.


SN54190, SN54191, SN54LS190,
 SN54LS191 . . . J PACKAGE
 SN74190, SN74191 . . . N PACKAGE
 SN74LS190, SN74LS191 . . . D OR N PACKAGE

(TOP VIEW)

SN54LS190, SN54LS191 . . . FK PACKAGE

(TOP VIEW)

NC - No internal connection

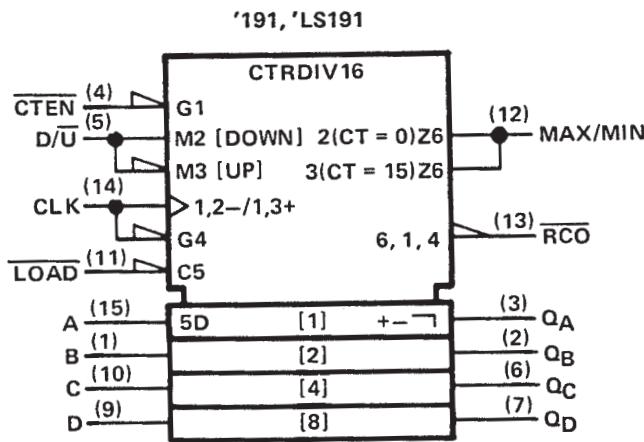
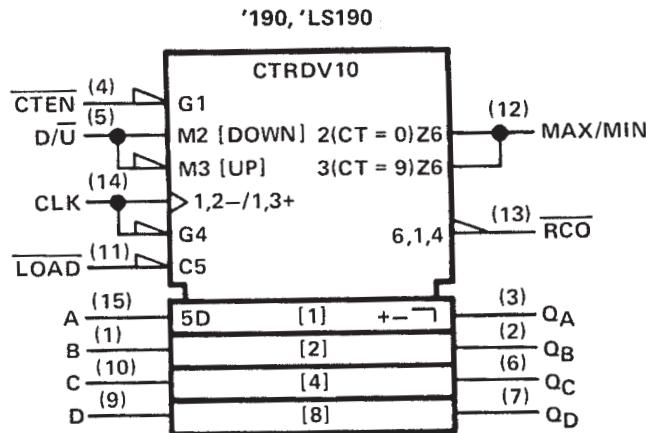
The outputs of the four master-slave flip-flops are triggered on a low-to-high transition of the clock input if the enable input is low. A high at the enable input inhibits counting. Level changes at the enable input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter count up and when high, it counts down. A false clock may occur if the down/up input changes while the clock is low. A false ripple carry may occur if both the clock and enable are low and the down/up input is high during a load pulse.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Series 54' and 54LS' are characterized for operation over the full military temperature range of -55°C to 125°C ; Series 74' and 74LS' are characterized for operation from 0°C to 70°C .

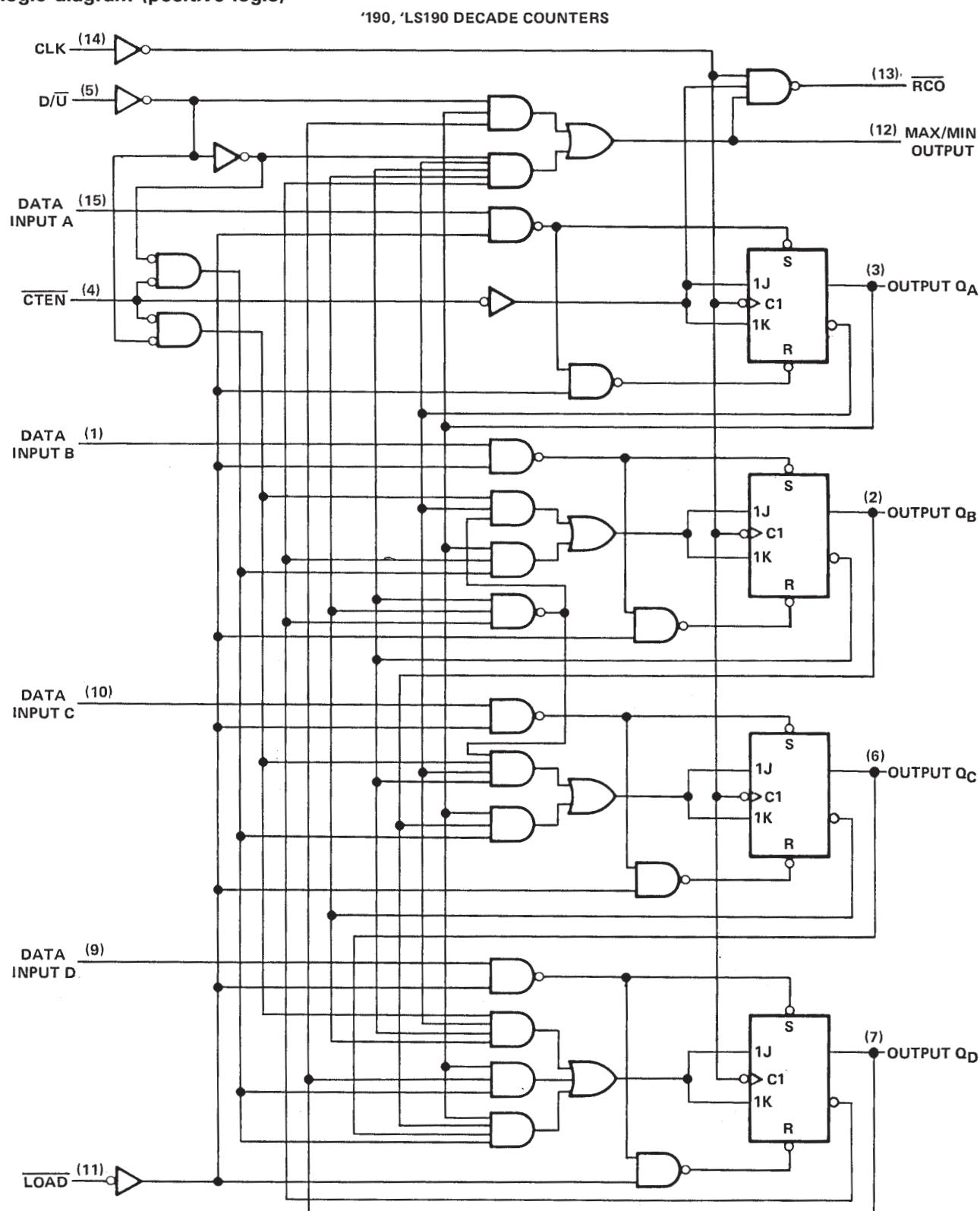


SN54190, SN54191, SN54LS190, SN54LS191,

SN74190, SN74191, SN74LS190, SN74LS191

SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SDLS072 - DECEMBER 1972 - REVISED MARCH 1988

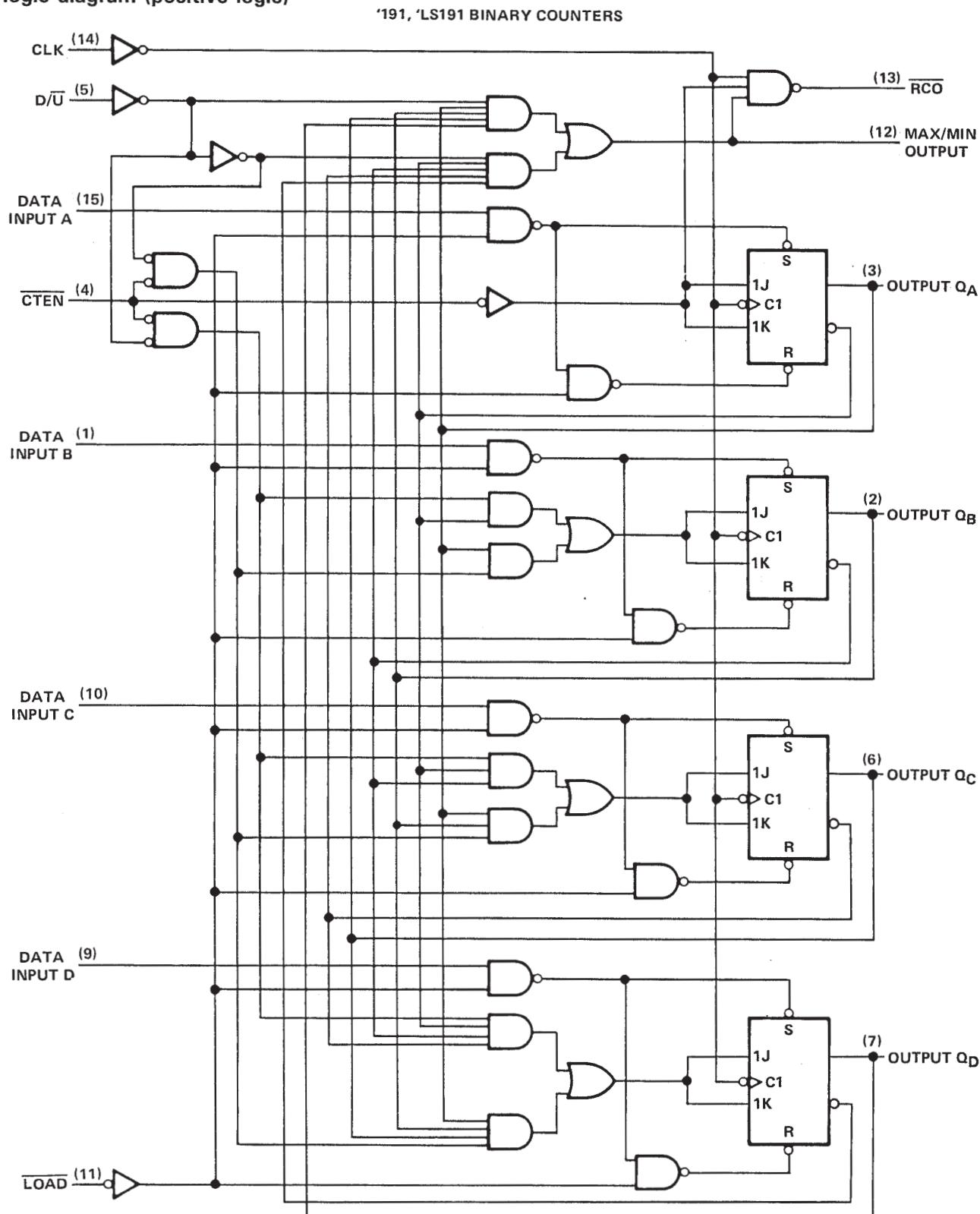
logic symbols†


† These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

SN54190, SN54LS190, SN74190, SN74LS190
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SDLS072 – DECEMBER 1972 – REVISED MARCH 1988


logic diagram (positive logic)

SN54191, SN54LS191, SN74191, SN74LS191
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

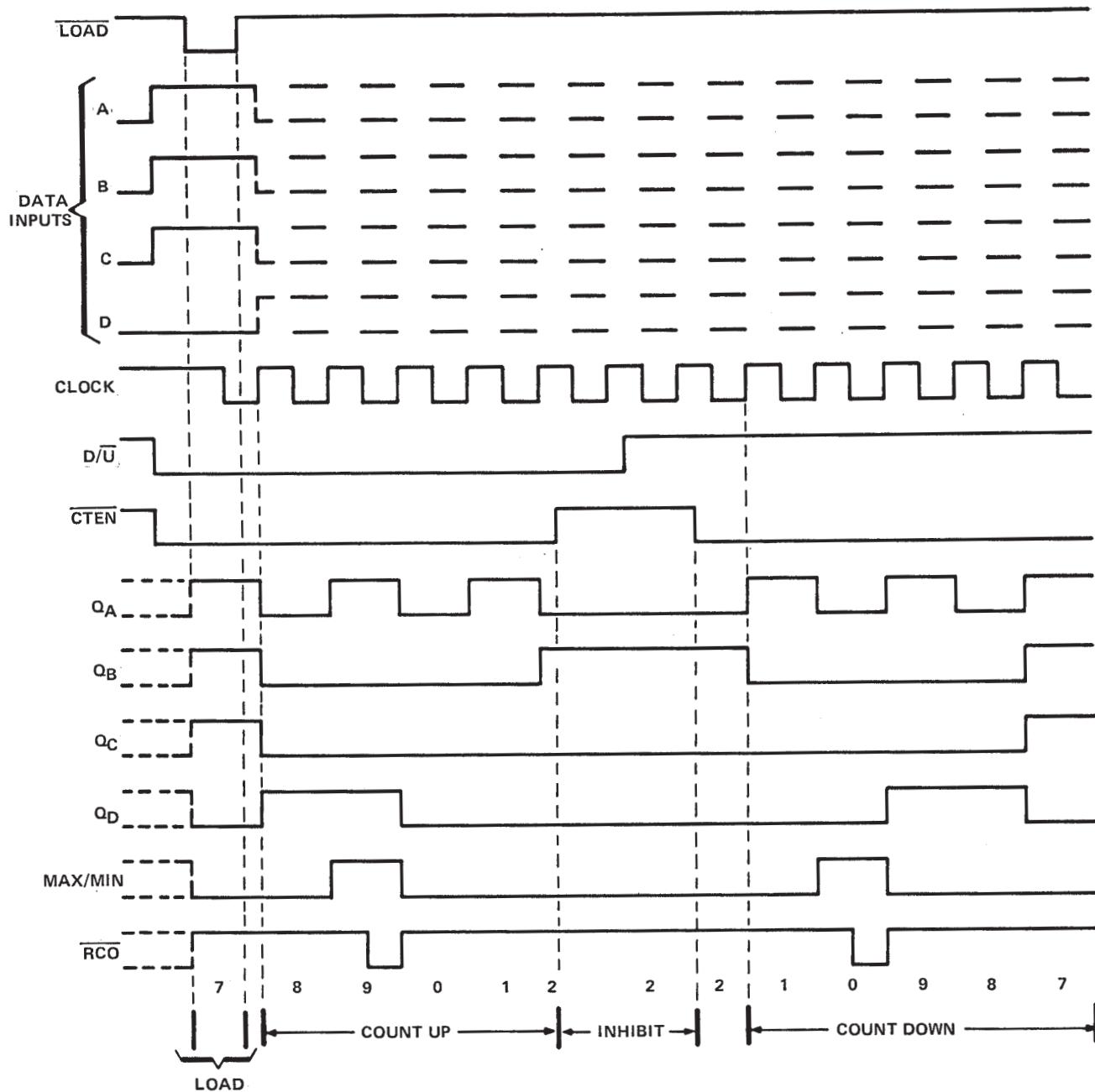
SDLS072 – DECEMBER 1972 – REVISED MARCH 1988

logic diagram (positive logic)

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN54190, SN54LS190, SN74190, SN74LS190
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL


SDLS072 – DECEMBER 1972 – REVISED MARCH 1988

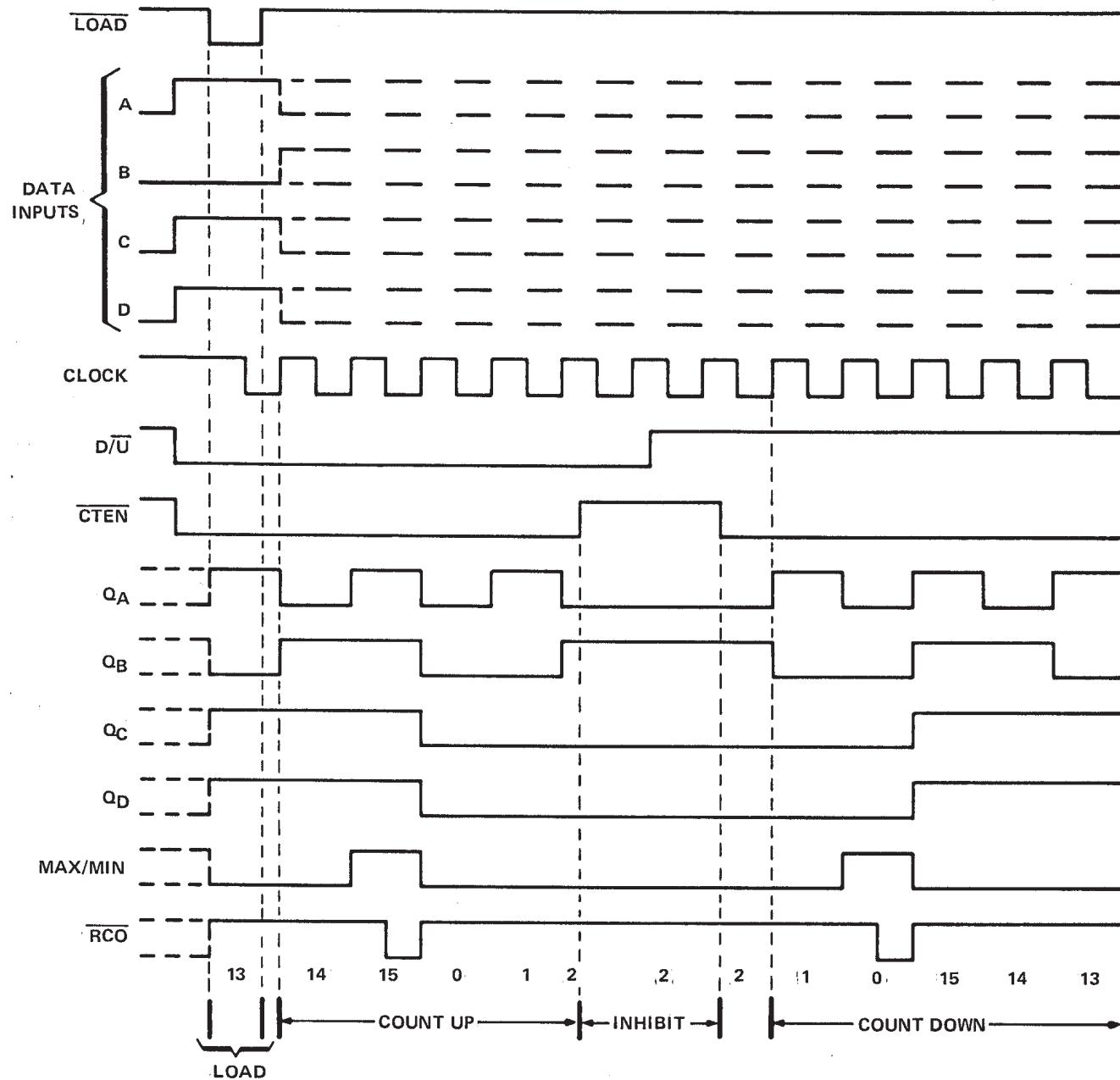
‘190, ‘LS190 DECADE COUNTERS

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

1. Load (preset) to BCD seven.
2. Count up to eight, nine (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), nine, eight, and seven.

SN54191, SN54LS191, SN74191, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL


SDLS072 – DECEMBER 1972 – REVISED MARCH 1988

'191, 'LS191 BINARY COUNTERS

Typical load, count, and inhibit sequences

Illustrated below is the following sequence:

1. Load (preset) to binary thirteen.
2. Count up to fourteen, fifteen (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

SN54190, SN54191, SN54LS190, SN54LS191,
SN74190, SN74191, SN74LS190, SN74LS191
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SDLS072 – DECEMBER 1972 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)	7 V
Input voltage: SN54', SN74' Circuits	5.5 V
SN54LS', SN74LS' Circuits	7 V
Operating free-air temperature range: SN54', SN54LS' Circuits	-55°C to 125°C
SN74', SN74LS' Circuits	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54190, SN54191			SN74190, SN74191			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
I_{OH}	High-level output current			-0.8			-0.8	mA
I_{OL}	Low-level output current			16			16	mA
f_{clock}	Input clock frequency	0		20	0		20	MHz
$t_{w(clock)}$	Width of clock input pulse	25			25			ns
$t_{w(load)}$	Width of load input pulse	35			35			ns
t_{su}	Setup time	20			20			ns
	Load inactive state	20			20			
t_{hold}	Data hold time	0			0			ns
T_A	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN54190, SN54191			SN74190, SN74191			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V_{IH}	High-level input voltage	$V_{CC} = \text{MIN}$	2		2			V
V_{IL}	Low-level input voltage	$V_{CC} = \text{MIN}$		0.8			0.8	V
V_{IK}	Input clamp voltage	$V_{CC} = \text{MIN}$, $I_I = -12 \text{ mA}$		-1.5			-1.5	V
V_{OH}	High-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = 0.8 \text{ V}$, $I_{OH} = -0.8 \text{ mA}$	2.4	3.4		2.4	3.4	V
V_{OL}	Low-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = 0.8 \text{ V}$, $I_{OL} = 16 \text{ mA}$	0.2	0.4		0.2	0.4	V
I_I	High-level input current at maximum input voltage	$V_{CC} = \text{MAX}$, $V_I = 5.5 \text{ V}$		1			1	mA
I_{IH}	High-level input current at any input except enable	$V_{CC} = \text{MAX}$, $V_I = 2.4 \text{ V}$		40			40	μA
I_{IH}	High-level input current at enable input			120			120	μA
I_{IL}	Low-level input current at any input except enable	$V_{CC} = \text{MAX}$, $V_I = 0.4 \text{ V}$		-1.6			-1.6	mA
I_{IL}	Low-level input current at enable input			-4.8			-4.8	mA
I_{OS}	Short-circuit output current [§]	$V_{CC} = \text{MAX}$	-20	-65	-18	-65		mA
I_{CC}	Supply current	$V_{CC} = \text{MAX}$, See Note 2	65	99	65	105		mA

[†]For conditions shown as MAX or MIN, use appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

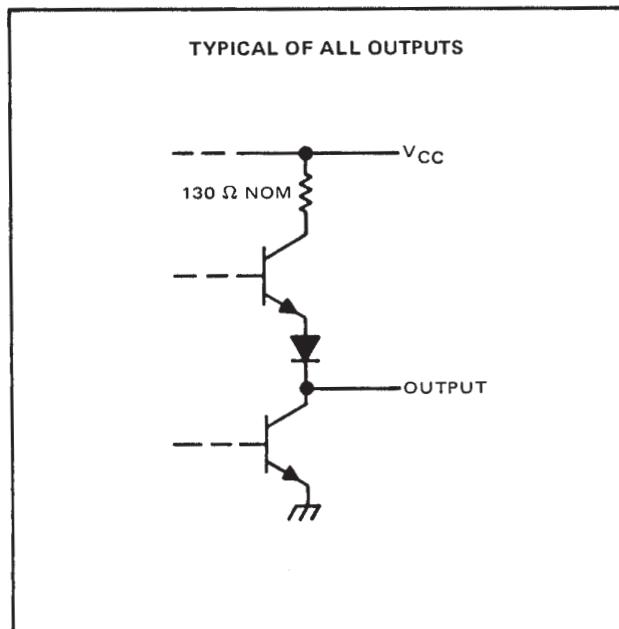
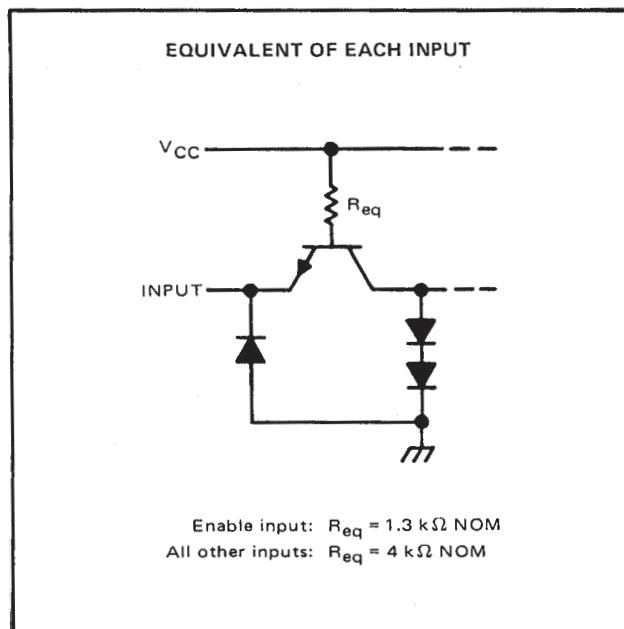
[§]Not more than one output should be shorted at a time.

NOTE 2: I_{CC} is measured with all inputs grounded and all outputs open.

SN54190, SN54191, SN74190, SN74191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SDLS072 – DECEMBER 1972 – REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$



PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS			UNIT
			MIN	TYP	MAX	
f_{max}			$C_L = 15 \text{ pF}$, $R_L = 400 \Omega$, See Figures 1 and 3 thru 7	20	25	MHz
t_{PLH}	Load	Q_A, Q_B, Q_C, Q_D		22	33	ns
t_{PHL}		Q_A, Q_B, Q_C, Q_D		33	50	
t_{PLH}	Data A, B, C, D	Q_A, Q_B, Q_C, Q_D		14	22	ns
t_{PHL}		Q_A, Q_B, Q_C, Q_D		35	50	
t_{PLH}	CLK	\overline{RCO}		13	20	ns
t_{PHL}		Q_A, Q_B, Q_C, Q_D		16	24	
t_{PLH}	CLK	Q_A, Q_B, Q_C, Q_D		16	24	ns
t_{PHL}		Max/Min		24	36	
t_{PLH}	D/ \bar{U}	\overline{RCO}		28	42	ns
t_{PHL}		Max/Min		37	52	
t_{PLH}	D/ \bar{U}	\overline{RCO}		30	45	ns
t_{PHL}		Max/Min		30	45	
t_{PLH}	D/ \bar{U}	Max/Min		21	33	ns
t_{PHL}		Max/Min		22	33	

[†] f_{max} = maximum clock frequency

t_{PLH} = propagation delay time, low-to-high-level output

t_{PHL} = propagation delay time, high-to-low-level output

schematics of inputs and outputs

SN54LS190, SN54LS191, SN74LS190, SN74LS191
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SDLS072 – DECEMBER 1972 – REVISED MARCH 1988

recommended operating conditions

		SN54LS190			SN74LS190			UNIT	
		SN54LS191			SN74LS191				
		MIN	NOM	MAX	MIN	NOM	MAX		
V_{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
I_{OH}	High-level output current			–0.4			–0.4	mA	
I_{OL}	Low-level output current			4			8	mA	
f_{clock}	Clock frequency	0	20		0	20		MHz	
$t_{w(clock)}$	Width of clock input pulse	25			25			ns	
$t_{w(load)}$	Width of load input pulse	35			35			ns	
t_{su}	Data setup time (See Figures 1 and 2)	20			20			ns	
t_{su}	Load inactive state setup time	30			30			ns	
t_h	Data hold time	5			5			ns	
t_h	Enable hold time	0			0			ns	
t_{enable}	Count enable time (see Note 3)	40			40			ns	
T_A	Operating free-air temperature	–55	125		0	70		°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]	SN54LS190			SN74LS190			UNIT	
			SN54LS191			SN74LS191				
			MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX		
V_{IH}	High-level input voltage		2			2			V	
V_{IL}	Low-level input voltage			0.7			0.8		V	
V_{IK}	Input clamp voltage	$V_{CC} = \text{MIN}$, $I_I = -18 \text{ mA}$			–1.5			–1.5	V	
V_{OH}	High-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = V_{IL} \text{ max}$, $I_{OH} = -400 \mu\text{A}$	2.5	3.4		2.7	3.4		V	
V_{OL}	Low-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = V_{IL} \text{ max}$	$I_{OL} = 4 \text{ mA}$	0.25	0.4	0.25	0.4		V	
			$I_{OL} = 8 \text{ mA}$				0.35	0.5		
I_I	High-level input current at maximum input voltage	$V_{CC} = \text{MAX}$, $V_I = 7 \text{ V}$		0.3		0.3			mA	
				0.1		0.1				
I_{IH}	High-level input current	$V_{CC} = \text{MAX}$, $V_I = 2.7 \text{ V}$		60		60			μA	
				20		20				
I_{IL}	Low-level input current	$V_{CC} = \text{MAX}$, $V_I = 0.4 \text{ V}$		–1.2		–1.2			mA	
				–0.4		–0.4				
I_{OS}	Short-circuit output current [§]	$V_{CC} = \text{MAX}$,		–20	–100	–20	–100		mA	
I_{CC}	Supply current	$V_{CC} = \text{MAX}$, See Note 2		20	35	20	35		mA	

[†]For conditions shown as MAX or MIN, use appropriate value specified under recommended operating conditions for the applicable device type.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

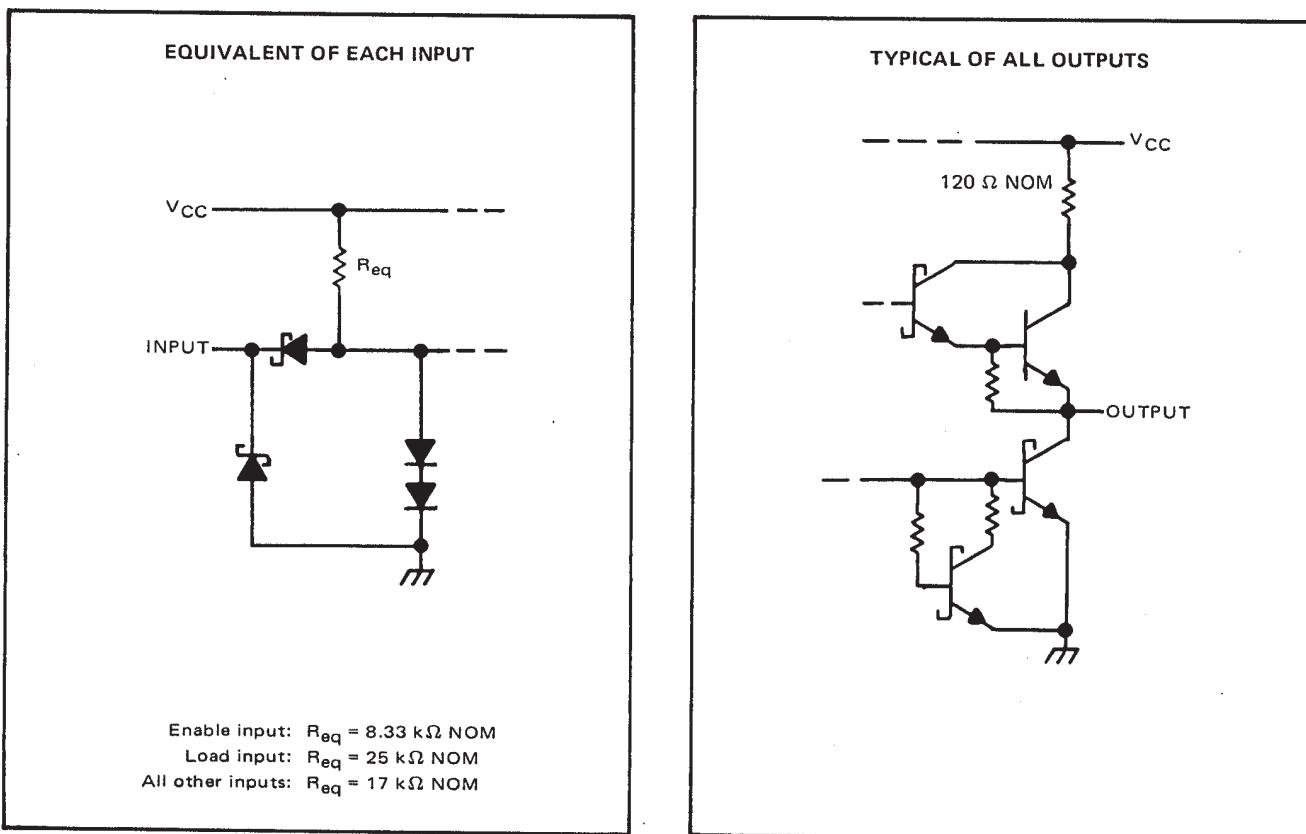
NOTES: 2. I_{CC} is measured with all inputs grounded and all outputs open.

3. Minimum count enable time is the interval immediately preceding the rising edge of the clock pulse during which interval the count enable input must be low to ensure counting.

SN54LS190, SN54LS191, SN74LS190, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SDLS072 – DECEMBER 1972 – REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$


PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS190, 'LS191			UNIT
				MIN	TYP	MAX	
f_{max}			$C_L = 15 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, See Figures 1 and 3 thru 7	20	25		MHz
t_{PLH}	Load	Q_A, Q_B, Q_C, Q_D		22	33		ns
t_{PHL}		Q_A, Q_B, Q_C, Q_D		33	50		ns
t_{PLH}	Data A, B, C, D	Q_A, Q_B, Q_C, Q_D		20	32		ns
t_{PHL}		Q_A, Q_B, Q_C, Q_D		27	40		ns
t_{PLH}	CLK	\overline{RCO}		13	20		ns
t_{PHL}		Q_A, Q_B, Q_C, Q_D		16	24		ns
t_{PLH}	CLK	Max/Min		16	24		ns
t_{PHL}		Max/Min		24	36		ns
t_{PLH}	D/Ü	\overline{RCO}		28	42		ns
t_{PHL}		Max/Min		37	52		ns
t_{PLH}	D/Ü	\overline{RCO}		30	45		ns
t_{PHL}		Max/Min		30	45		ns
t_{PLH}	\overline{CTEN}	\overline{RCO}		21	33		ns
t_{PHL}		\overline{RCO}		22	33		ns
				21	33		ns
				22	33		ns

[†] f_{max} = maximum clock frequency

t_{PLH} = propagation delay time, low-to-high-level output

t_{PHL} = propagation delay time, high-to-low-level output

schematics of inputs and outputs

PARAMETER MEASUREMENT INFORMATION

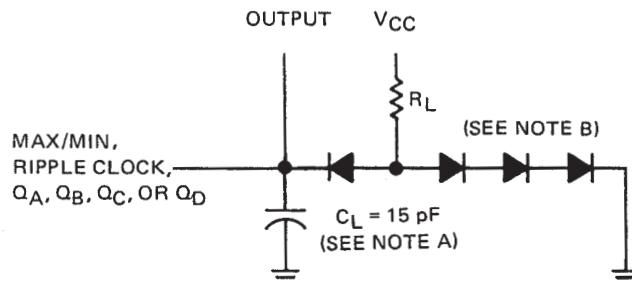


FIGURE 1—LOAD CIRCUIT
FOR SWITCHING TIME MEASUREMENT

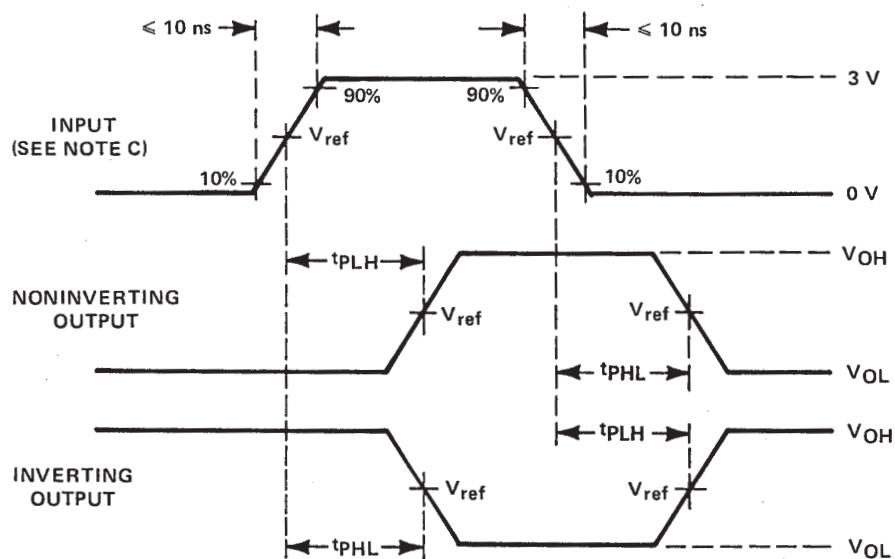
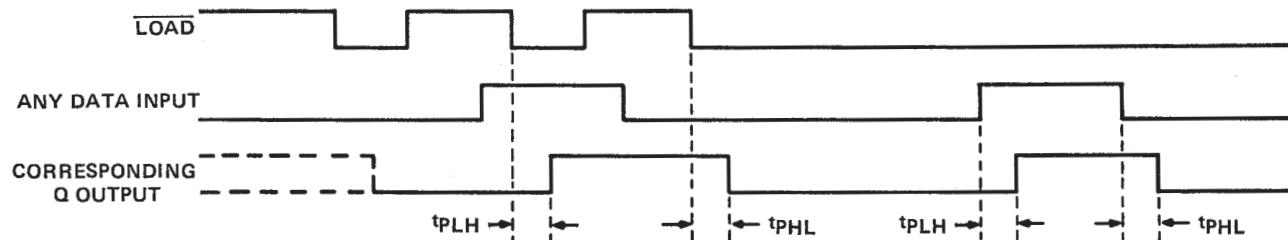



FIGURE 2—DATA SETUP TIME VOLTAGE WAVEFORMS

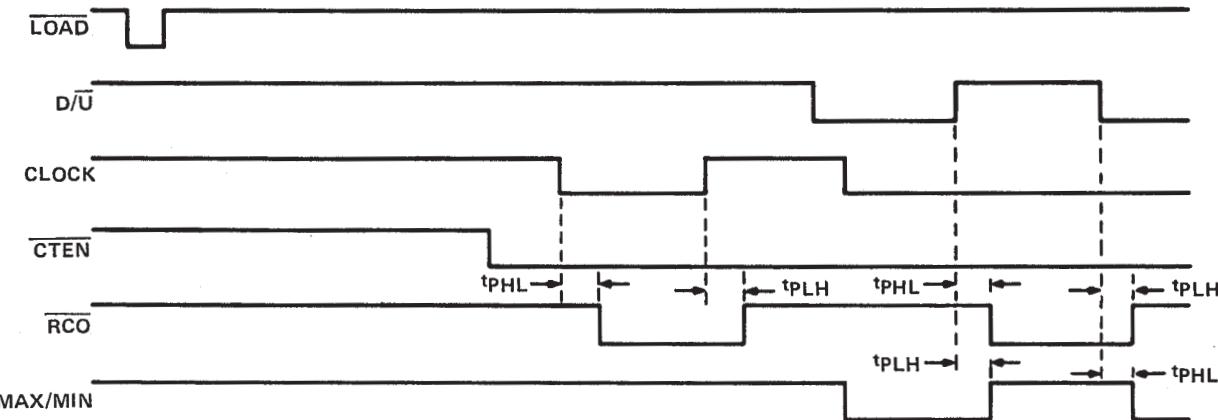
See waveform sequences in figures 4 through 7 for propagation times from a specific input to a specific output. For simplification, pulse rise times, reference levels, etc., have not been shown in figures 4 through 7.

FIGURE 3—GENERAL VOLTAGE WAVEFORMS FOR PROPAGATION TIMES


NOTES: A. C_L includes probe and jig capacitance.
 B. All diodes are 1N3064 or equivalent.
 C. The input pulses are supplied by generators having the following characteristics: $Z_{out} = 50 \Omega$, duty cycle $\leq 50\%$, PRR ≤ 1 MHz.
 D. $V_{ref} = 1.5$ V for '190 and '191; 1.3 V for 'LS190 and 'LS191.

SN54190, SN54191, SN54LS190, SN54LS191,
SN74190, SN74191, SN74LS190, SN74LS191

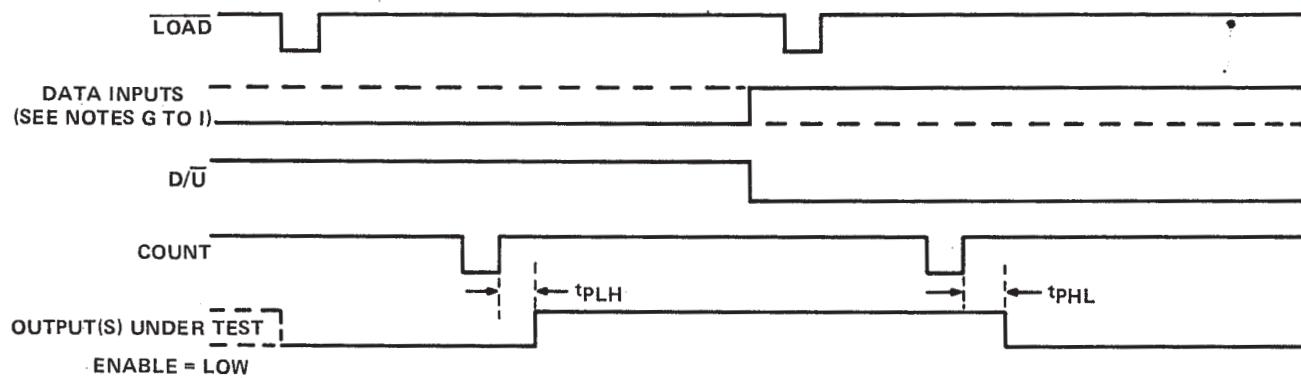
SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL


SDLS072 - DECEMBER 1972 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION (continued)

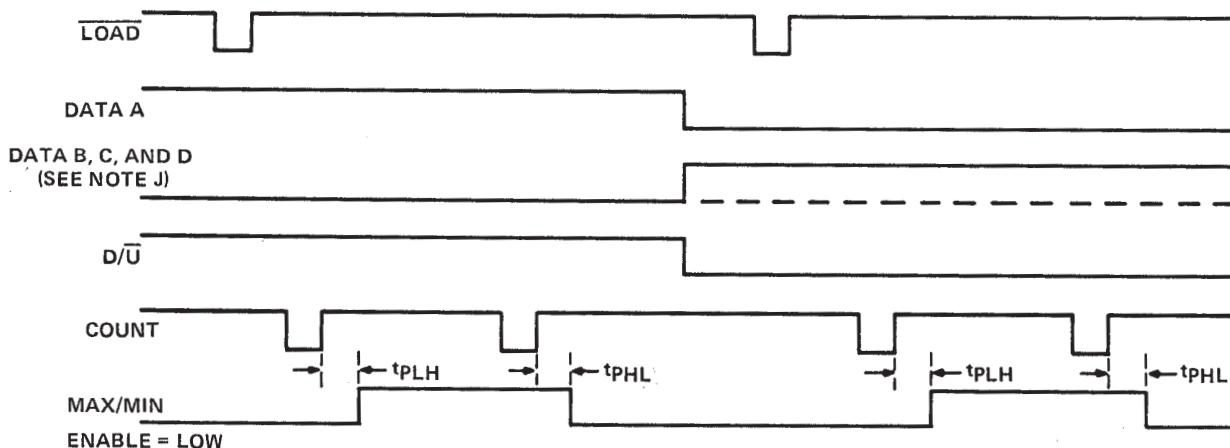
NOTE E: Conditions on other inputs are irrelevant.

FIGURE 4—LOAD TO OUTPUT AND DATA TO OUTPUT



NOTE F: All data inputs are low.

FIGURE 5—ENABLE TO RIPPLE CLOCK, CLOCK TO RIPPLE CLOCK, DOWN/UP TO RIPPLE CLOCK, AND DOWN/UP TO MAX/MIN


PARAMETER MEASUREMENT INFORMATION (continued)

switching characteristics (continued)

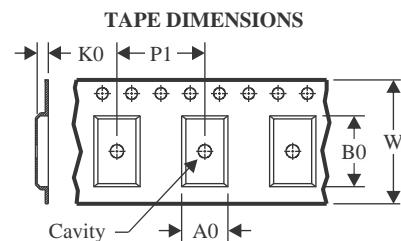
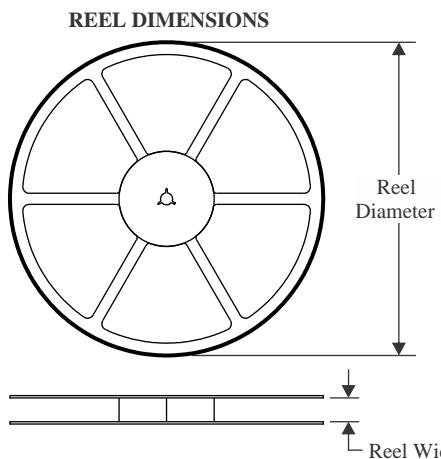
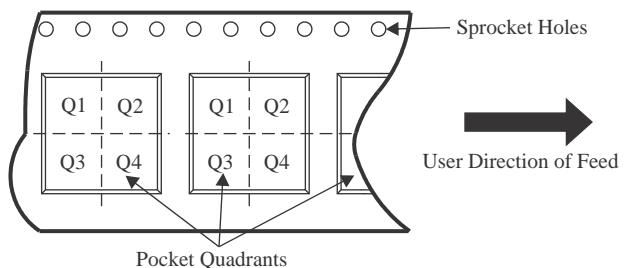
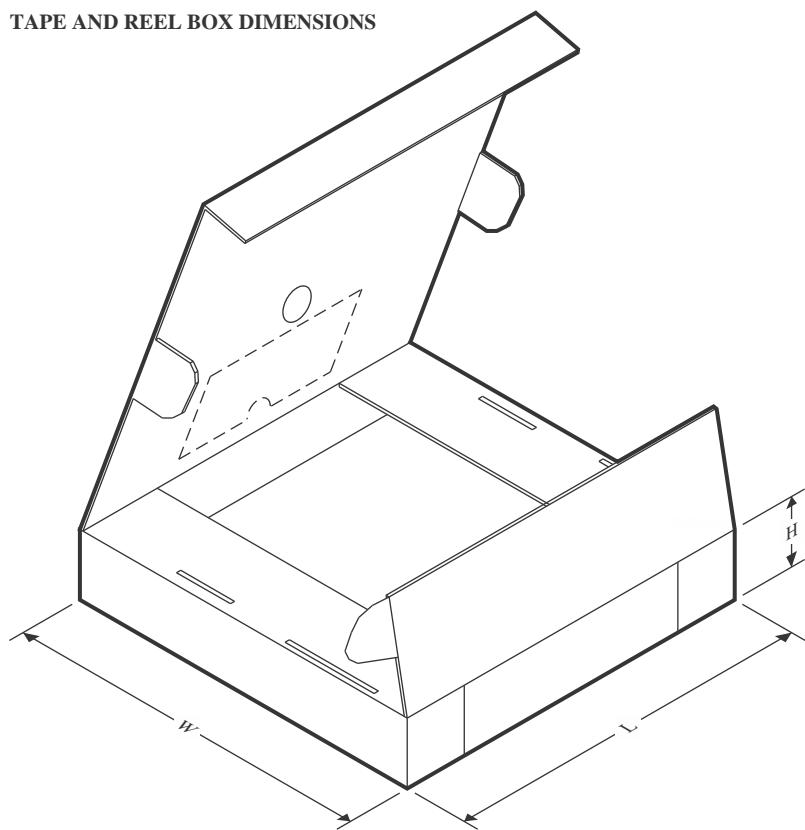


NOTES: G. To test Q_A , Q_B , and Q_C outputs of '190 and 'LS190: Data inputs A, B, and C are shown by the solid line. Data input D is shown by the dashed line.
 H. To test Q_D output of '190 and 'LS190: Data inputs A and D are shown by the solid line. Data inputs B and C are held at the low logic level.
 I. To test Q_A , Q_B , Q_C , and Q_D outputs of '191 and 'LS191: All four data inputs are shown by the solid line.

FIGURE 6-CLOCK TO OUTPUT



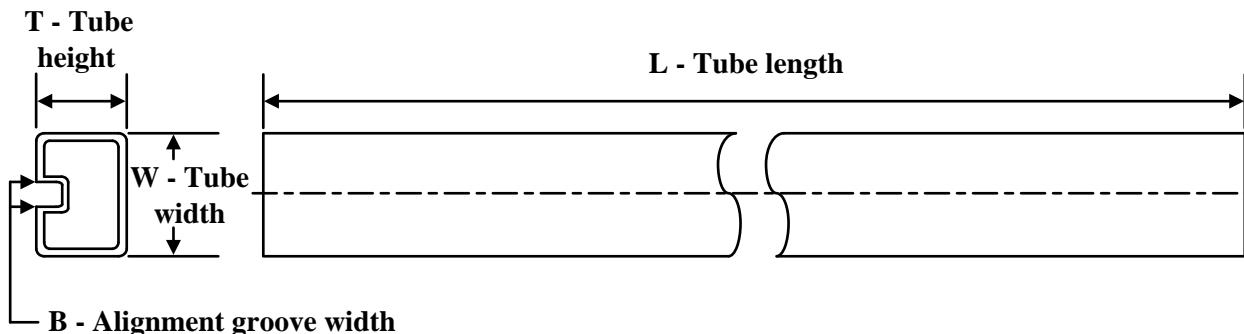
NOTE J: Data inputs B and C are shown by the dashed line for the '190 and 'LS190 and the solid line for the '191 and 'LS191: Data input D is shown by the solid line for both devices.

FIGURE 7-CLOCK TO MAX/MIN


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS191DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS191NSR	SOP	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS191DR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LS191NSR	SOP	NS	16	2000	367.0	367.0	38.0

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
7600901FA	W	CFP	16	25	506.98	26.16	6220	NA
JM38510/31509BFA	W	CFP	16	25	506.98	26.16	6220	NA
JM38510/31509BFA.A	W	CFP	16	25	506.98	26.16	6220	NA
M38510/31509BFA	W	CFP	16	25	506.98	26.16	6220	NA
SN74LS191N	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS191N	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS191N.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS191N.A	N	PDIP	16	25	506	13.97	11230	4.32
SNJ54LS191FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54LS191FK.A	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54LS191W	W	CFP	16	25	506.98	26.16	6220	NA
SNJ54LS191W.A	W	CFP	16	25	506.98	26.16	6220	NA

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated