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Brushless DC Motor Single Neuron Adaptive Intelligent Speed Control System

LI Meng-da', WANG Yan?, KONG Tie-chen®, GAO Wei-hua*
(1.EE Dept. Northeast Petroleum University, Daging 163318, China)
Abstract : This paper in view of brushless DC motor (BLDCM) designs a kind of single neuron adaptive proportion in-
tegration differentiation (PID) intelligent controller which can be learned online.The weights can be adjusted by super-
vised Hebb learning rule,the neuron weights are adjusted depending on feedback error in every sampling,so as to re-
alize the self-adaptation of three PID parameters.BLDCM back electromotive force wave is built using piecewise lin-
earization method,the current regulation is realized using hysteresis current controller and simulation model is struc-
tured based on Matlab/Simulink simulation platform.The results show that the intelligent PID control effect and robust-
ness are better than the conventional PID,so it improves the following characteristic of the system,and it can satisfy
the real-time requirements of the brushless motor system.

Keywords : brushless direct current motor; single neuron; intelligent control; piecewise linearization

2 ZRIERBNER

B 1R eEFRX =42 BLDCM &2,
“HETHRASHSHTFREMP AN TR

5l
BLDCM B A AR/ | T 2% B w32 o ] 1

i

A SRR, KN AR 2 s
RERERE ZTERSA, 4 PID BHRIEER
GHEEEREEXR, BAELHENINEREE
1T BB 5 Fy 3 ) 0 0 4 455 050 L BOR 4 1 4%
SRS SN R A BT,

K P B 427G B 38 B ¥ 1) 77 32 8 3L BLDCM
WA WE RS, BilH B Hebb 22 ¥ H
BN R HENK S, KA BREEEER
BLDCM ] R B3h AR 3, HAE b A ml b g
TSRS EE BLDCM BEERB RS, T E &
RR\ARGEFEORMPIT YRR I MBE3) .

M B 2012-08-11
EEBNEFA(1980-), B, A EFREA HE B
BRI QA LACTFRAECAHS,

TPREBSHHE, HEXGHTTANR - GHET
TFREH . KR B HlL LKA B R4
BT HBIHLRSE”,

¥ _@\ID. ._.GVDa
Vi V3
Vs VD4 Ve VD¢

: rka !

—
[ B =—S v w ry e ms

B 1 &% BLDCM 41
Fig. 1 A fully-controlled bridge BLDCM structure
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Fig. 2 BLDCM back electromotive force waveforms
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Fig. 4 Single neuron control structure

KBKRESBE, BB HEKR, FRERTR
B, K HIT/D, REERENEE I K=2, w,(k)
71 % 5% B 45 Wi B (4 Hebb 22 =) 30 ) SEBR PID 2
W3NS HPAELENEE,
wy (k)=w, (k=1)+me (k)u(k)x (k)
wy(k)=w,(k=1)+ne (k)u(k)x (k) (3)
wy(k)=ws(k—1)+ne (k)u(k)x(k)
My, Ma 2 BATRS HLB) B SRR
K FH AN R #) 2 3038 3 AE F X S TR AR #0490 kAT
R, RS E AL, SR EER
HERBRENMETNERE 1 K,9,n,,m, B
4514 0.35,0.5,0.35;3 MG HAERE A 0~
1 I RENLE
HF PID B MTELRFIBIES e(k),Ae (k)=
e(k)-e(k-1)H %, 2T Ik 8% T HIEN PID
BRI LR MR B FE I B IER S #IT B,
B (3) B (k) (i=1,2,3) A e (k)+Ae (k)
R ] 15 2 U 5 i 2 S H ik

4 EHERERZEE

W FR B R HI RS BLDCM S R 4%
Wi 5 s SRAXR AR R, HEI H
PL AT 8400 1, HEL IR fl B R A R T B MR,

iy [
l i. | Rl

far

i Tl
—E ) 5
L i |

i
- PWM i A BLDCM
cr 2 %g
T R ERW—®

Bl 5 BLDCM IR G & i HERE
Fig. 5 The design diagram of BLDCM control system
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Table 2 The relationship between rotor position and i ~i.
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Fig. 6 Simulation waveforms
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Fig. 7 The torque response curves
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Fig. 8 The rotating speed response waveforms
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