P-1

LTA6041, LTA6042, LTA6044 100 MHz, 70mA Rail-to-Rail Output, Low Power CMOS Amplifiers

General Description

The LTA604x family true single-supply voltage feedback operational amplifiers feature high speed performance with 100 MHz of small signal bandwidth and 107 V/µs slew rate. The products are specified for +3 V, +5 V, and \pm 5 V supplies, input common mode voltage range extends to 0.2 V below V_{S-} and 1 V from V_{S+}, and output voltage range extends to within 500 mV of either supply rail, allowing wide dynamic range especially desirable in low voltage applications. The LTA604xC also offer excellent signal quality of low distortion (-53 dBc with a 2 V_{PP}, 5 MHz output signal) and fast settling time (66 ns to 0.1%), which make them ideal as buffers to single-supply ADCs.

Operating on supplies from +2.5 V to +12.6 V and dual supplies up to \pm 6.3 V, the LTA604x are ideal for a wide range of applications, from battery-operated systems with large bandwidth requirements to high speed systems where component density requires lower power dissipation. The single version LTA6041 device is available in micro-size SOT23-5L and SOIC-8L packages. The dual LTA6042 device is offered in MSOP-8L and SOIC-8L packages. The quad LTA6044 device is offered in SOIC-14L and TSSOP-14L packages.

Features and Benefits

- High Speed and Fast Settling on ±5 V
 - 105 MHz, -3 dB bandwidth (G = +1)
 - 107 V/μs slew rate
 - 66 ns settling time to 0.1%
- Fully specified at +3 V, +5 V, and ±5 V Supplies
- Low Input Bias Current 4 pA
- Input Common Mode Voltage 0.2 V Beyond V_{S-}, 1 V from V_{S+}
- Output Voltage Swing 500 mV from Rails
- Output Short Circuit Current 150 mA
- Linear Output Current ± 70 mA
- Operating Temperature Range -40°C to +125°C (except S0T23-5L)

Applications

- High speed, battery-operated systems
- High component density systems
- Portable test instruments
- A/D buffers
- Active filters
- High speed, set-and-demand amplifiers

Pin Configuration (Top View)

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved.

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from $V_{\text{S}^{-}}$ – 0.2V to $V_{\text{S}^{+}}$ – 1V.
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as –IN.
+V _S	Positive power supply. The voltage is from 2.5V to 12.6V. Split supplies are possible as long as the voltage between V_{S^\star} and V_{S^-} is from 2.5V to 12.6V.
-V _s	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S^*} and V_{S^-} is from 2.5V to 12.6V.
OUT	Amplifier output.
NC	No connection

Ordering Information (1)

Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code ⁽³⁾
LTA6041XT5/R6	S0T23-5L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	W41
LTA6041XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	W6041
LTA6042XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	W6042
LTA6042XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	W6042
LTA6044XS14/R5	SOIC-14L	Tape and Reel, 2 500	Green (RoHS & no Sb/Br)	W6044
LTA6044XT14/R6	TSSOP-14L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	W6044

(1) Please contact to your Linearin representative for the latest availability information and product content details.

(2) Eco Class - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).

(3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V _{S+} to V _{S−}	13.5 V
Signal Input Terminals: Voltage, Current	–V _S – 0.5 V to +V _S + 0.5 V, \pm 10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	−65 to +150 °C
Junction Temperature, T _J	150 ℃
Lead Temperature Range (Soldering 10 sec)	260 ℃

ESD Rating

Parameter	Item	Value	Unit
Electrostatic Discharge Voltage	Human body model (HBM), per MIL-STD-883J / Method 3015.9 ⁽¹⁾	$\pm 4\ 000$	M
	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 $^{(2)}$	$\pm 2\ 000$	— v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

(2)JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved.

İNEARIN

LTA6041, LTA6042, LTA6044 100 MHz, 60mA Rail-to-Rail Output, Low Power CMOS Amplifiers

Electrical Characteristics

P-3

V_s = 3 V, T_A = +25 °C, V_{CM} = V_0 = V_s /2, and R_L = 2 k Ω to V_s /2, unless otherwise noted. Boldface limits apply over the specified temperature range, $T_A = -40$ °C to +125 °C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DYNAM	C PERFORMANCE					
		G = +1, V ₀ = 0.2V _{PP}		95		
BW_{-3dB}	–3 dB Small Signal Bandwidth	G = +2, -1, V ₀ = 0.2V _{PP}		38	-	MHz
BW _{0.1dB}	Bandwidth for 0.1 dB Flatness	G = +2, V ₀ = 0.2V _{PP} , R _L = 150Ω to V _S /2, R _F =402Ω		8.5		MHz
SR	Slew rate	G = -1, V ₀ = 2V step		98		V/µs
BW_{FP}	Full Power Response	G = +1, V ₀ = 1V _{PP}		11		MHz
t _s	Settling time to 0.1%	G = -1, V ₀ = 2V step		66		ns
NOISE/	DISTORTION PERFORMANCE					
THD	Total harmonic distortion	f _c = 5MHz, V ₀ = 2V _{PP} , G = +2		-36		dBc
e _n	Input voltage noise density	f = 100kHz		27		nV/√Hz
I _n	Input current noise density	f = 10kHz		3		pA/√Hz
		G = +2, R _L = 150Ω to V _S /2		0.17		
DG	Differential Gain Error (NTSC)	R_{L} = 1k Ω to V _S /2		0.03	_	%
		$G = +2, R_{L} = 150\Omega \text{ to } V_{S}/2$		0.05		
DP	Differential Phase Error (NTSC)	$R_{\rm L} = 1k\Omega$ to $V_{\rm S}/2$		0.03	-	deg.
	FORMANCE			0.00		
V _{os}	Input offset voltage			±3	±15	mV
V _{os} TC	Offset voltage drift	T _A = −40 to +125 °C		±5		μV/°C
	Input higg current			4		n A
I _B I _{0S}	Input bias current Input offset current			2		pA pA
.03	input onset current	R _L = 2kΩ to V _S /2, V ₀ = 0.5V to 2.5V		95		PA
A _{VOL}	Open-loop voltage gain	R_L = 150Ω to V _s /2, V ₀ = 0.5V to 2.5V R _L = 0.5V to 2.5V		82		dB
INPUT C	HARACTERISTICS			02		
R _{IN}	Input Resistance	Common mode		1		GΩ
C _{IN}	Input capacitance	Common mode		2		pF
V _{CM}	Common-mode voltage range	CMRR ≥ 50dB	-0.2	-	2	V
CMRR	Common-mode rejection ratio	V _{CM} = 0V to 1.5 V		85	-	dB
OUTPUT						48
0011 01		R_{L} = 2k Ω to V _S /2		2.97		
V _{он}	High output voltage swing	$R_{L} = 150\Omega \text{ to } V_{S}/2$		2.85		V
		$R_L = 2k\Omega$ to $V_S/2$		30		
V _{OL}	Low output voltage swing	$R_{\rm L} = 150\Omega \text{ to } V_{\rm S}/2$		230		mV
	Output Current	V _{OUT} = 0.5V from either supply		±60		mA
	Short-circuit current			±00 ±110		
		C - +2				mA
CLOAD	Capacitive load drive	G = +2		40		pF

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
POWER	POWER SUPPLY									
Vs	Operating supply range		2.5		12.6	V				
Ι _Q	Quiescent current /Amplifier			4.1		mA				
PSRR	Power supply rejection ratio	V _S = 3.0 to 3.5 V		70		dB				

 V_{s} = 5 V, T_{A} = +25 °C, V_{CM} = V_{0} = $V_{s}/2$, and R_{L} = 2 k Ω to $V_{s}/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, T_{A} = -40 °C to +125 °C.

DYNAM	IC PERFORMANCE				
		G = +1, V ₀ = 0.2V _{PP}	100		_
BW _{-3dB}	–3 dB Small Signal Bandwidth	G = +2, -1, V ₀ = 0.2V _{PP}	38		MHz
BW _{0.1dB}	Bandwidth for 0.1 dB Flatness	G = +2, V_0 = 0.2V_{PP}, R_L = 150\Omega to V_S/2, R_F = 402\Omega	8		MHz
SR	Slew rate	G = -1, V ₀ = 2V step	102		V/µs
BW_{FP}	Full Power Response	G = +1, V ₀ = 2V _{PP}	14		MHz
t _s	Settling time to 0.1%	G = -1, V ₀ = 2V step	66		ns
NOISE/	DISTORTION PERFORMANCE				
THD	Total harmonic distortion	f _c = 5MHz, V ₀ = 2V _{PP} , G = +2	-49		dBc
en	Input voltage noise density	f = 100kHz	27		nV/√Hz
l _n	Input current noise density	f = 10kHz	3		pA/√Hz
		G = +2, R_{L} = 150 Ω to $V_{S}/2$	0.16		
DG	Differential Gain Error (NTSC)	R_L = 1k Ω to V _S /2	0.05		%
		G = +2, R _L = 150Ω to V _S /2	0.05		
DP	Differential Phase Error (NTSC)	R_{L} = 1k Ω to V _S /2	0.01		deg.
DC PER	FORMANCE				
V _{os}	Input offset voltage		±2	±15	mV
$V_{\text{OS}} \text{TC}$	Offset voltage drift	T _A = −40 to +125 °C	±5		μV/°C
I _B	Input bias current		4		pА
l _{os}	Input offset current		2		pА
		R_{L} = 2k Ω to V_S/2, V_0 = 0.5V to 2.5V	98		_
A _{VOL}	Open-loop voltage gain	R_L = 150 Ω to V_S/2, V_0 = 0.5V to 2.5V	82		dB
	CHARACTERISTICS				
R _{IN}	Input Resistance	Common mode	1		GΩ
CIN	Input capacitance	Common mode	2		рF
V_{CM}	Common-mode voltage range	CMRR ≥ 50dB	-0.2	4	V
CMRR	Common-mode rejection ratio	V _{CM} = 0V to 1.5 V	95		dB
OUTPUT	-				
		R_L = 2k Ω to V _S /2	4.9		
V _{OH}	High output voltage swing	$R_L = 150\Omega$ to $V_S/2$	4.8		V

© Copyright Linearin Technology Corporation. All Rights Reserved.

Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		R_L = 2k Ω to V _S /2		60		
V _{OL}	Low output voltage swing	$R_L = 150\Omega$ to $V_S/2$		370		mV
I _{out}	Output Current	V _{OUT} = 0.5V from eithersupply		±65		
I _{SC}	Short-circuit current			±130		mA
C_{LOAD}	Capacitive load drive	G = +2		40		pF
POWER	SUPPLY					
Vs	Operating supply range		2.5		12.6	V
la	Quiescent current /Amplifier			4.2		mA
PSRR	Power supply rejection ratio	V _S = 4.0 to 6 V		78		dB

V_{S} = 10 V, T_{A} = +25 °C, V_{CM} = V_{0} = V_{S} /2, and R_{L} = 2 k Ω to V_{S} /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_{A} = -40 °C to +125 °C.

DYNAM	IC PERFORMANCE				
		G = +1, V ₀ = 0.2V _{PP}	105		_
BW_{-3dB}	−3 dB Small Signal Bandwidth	G = +2, -1, V ₀ = 0.2V _{PP}	43		MHz
BW _{0.1dB}	Bandwidth for 0.1 dB Flatness	G = +2, V ₀ = 0.2V _{PP} , R _L = 150Ω to V _S /2, R _F =402Ω	6		MHz
SR	Slew rate	G = -1, V ₀ = 2V step	107		V/µs
BW_{FP}	Full Power Response	G = +1, V ₀ = 2V _{PP}	16		MHz
ts	Settling time to 0.1%	G = -1, V ₀ = 2V step	66		ns
NOISE/I	DISTORTION PERFORMANCE				
THD	Total harmonic distortion	f _C = 5MHz, V ₀ = 2V _{PP} , G = +2	-53		dBc
en	Input voltage noise density	f = 100kHz	27		nV/√Hz
l _n	Input current noise density	f = 10kHz	3		pA/√Hz
		G = +2, R_L = 150 Ω to $V_S/2$	0.15		_
DG	DG Differential Gain Error (NTSC)	R_L = 1k Ω to V _S /2	0.02		%
		G = +2, R_L = 150 Ω to $V_S/2$	0.05		
DP	Differential Phase Error (NTSC)	R_{L} = 1k Ω to V _S /2	0.02		deg.
DC PER	FORMANCE				
V _{os}	Input offset voltage		±2	±15	mV
$V_{\text{OS}} \text{TC}$	Offset voltage drift	T _A = −40 to +125 °C	±5		μV/°C
I _B	Input bias current		4		pА
l _{os}	Input offset current		2		pА
		R_L = 2k Ω to V _S /2, V ₀ = 0.5V to 2.5V	96		_
A _{VOL}	Open-loop voltage gain	R_L = 150 Ω to V_S/2, V_0 = 0.5V to 2.5V	82		dB
	CHARACTERISTICS				
R _{IN}	Input Resistance	Common mode	1		GΩ
C _{IN}	Input capacitance	Common mode	2		pF

© Copyright Linearin Technology Corporation. All Rights Reserved.

Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{CM}	Common-mode voltage range	$CMRR \ge 50 dB$	-0.2		9	V
CMRR	Common-mode rejection ratio	V _{CM} = 0V to 1.5 V		95		dB
OUTPUT						
		R_L = 2k Ω to V _S /2		4.91	_	
V _{OH}	High output voltage swing	R_L = 150 Ω to V _S /2		4.52		V
		R_L = 2k Ω to V _S /2		-4.9	_	
V _{OL}	Low output voltage swing	R_{L} = 150 Ω to $V_{S}/2$		-4.5		V
I _{OUT}	Output Current	V _{OUT} = 0.5V from eithersupply		±70		
I _{SC}	Short-circuit current			±150		mA
C_{LOAD}	Capacitive load drive	G = +2		40		рF
POWER	SUPPLY					
Vs	Operating supply range		2.5		12.6	V
la	Quiescent current /Amplifier			4.4		mA
PSRR	Power supply rejection ratio	V _S = \pm 4.5 V to \pm 5.5 V		78		dB
THERMA	AL CHARACTERISTICS					
		SOT23-5L	-40		+85	
T _A	Operating temperature range	Other packages	-40		+125	°C
		SOT23-5L		190		
		MSOP-8L		201		_
θ_JA	Package Thermal Resistance	SOIC-8L		125		°C/M

TSSOP-14L

SOIC-14L

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

112

115

LTA6041, LTA6042, LTA6044 100 MHz, 60mA Rail-to-Rail Output, Low Power CMOS Amplifiers

Tape and Reel Information

QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE

* All dimensions are nominal

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
LTA6041XT5/R6	SOT23	5	3 000	178	9.0	3.3	3.2	1.5	4.0	8.0	Q3
LTA6041XS8/R8	SOIC	8	4 000	330	12.4	6.6	5.3	2.0	8.0	12.0	Q1
LTA6042XS8/R8	SOIC	8	4 000	330	12.4	6.6	5.3	2.0	8.0	12.0	Q1
LTA6042XV8/R6	MSOP	8	3 000	330	12.4	5.0	3.5	2.0	8.0	12.0	Q1
LTA6044XS14/R5	SOIC	14	2 500	330	18	8.5	1.1	2.0	8.5	1.6	Q1
LTA6044XT14/R6	TSSOP	14	3 000	330	18	8.5	1.1	2.0	8.5	1.6	Q1

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved.

Package Outlines

P-8

DIMENSIONS, SOT23-5L

	Dimer	Dimer	nsions		
Symbol		meters	In Inches		
	Min	Max	Min	Max	
Α	-	1.25	-	0.049	
A1	0.04	0.10	0.002	0.004	
A2	1.00	1.20	0.039	0.047	
b	0.33	0.41	0.013	0.016	
С	0.15	0.19	0.006	0.007	
D	2.820	3.02	0.111	0.119	
E1	1.50	1.70	0.059	0.067	
E	2.60	3.00	0.102	0.118	
e	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.60	REF	0.024	REF	
L1	0.30	0.60	0.012	0.024	
θ	0 °	8°	0°	8°	

RECOMMENDED SOLDERING FOOTPRINT, SOT23-5L

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Package Outlines (continued)

DIMENSIONS, SOIC-8L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-8L

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

INEARIN

Package Outlines (continued)

DIMENSIONS, MSOP-8L

RECOMMENDED SOLDERING FOOTPRINT, MSOP-8L

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

Package Outlines (continued)

DIMENSIONS, SOIC-14L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L

[©] Copyright Linearin Technology Corporation. All Rights Reserved.

Package Outlines (continued)

DIMENSIONS, TSSOP-14L

RECOMMENDED SOLDERING FOOTPRINT, TSSOP-14L

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

Important Notice

Linearin is a global fabless semiconductor company specializing in advanced high-performance highquality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multi-market of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industry 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to <u>http://www.linearin.com</u> for a complete list of Linearin product families.

For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

