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无刷双馈异步电机潮流建模和收敛性研究 

李生虎，华玉婷，朱婷涵 

(合肥工业大学电气与自动化工程学院，安徽 合肥 2 30009) 

摘要：针对并网无刷双馈异步电机 (BDFM)风电机组潮流计算问题，发现在最大功率点跟踪 (MPPT)方式下，BDFM有功出 

力与电网运行条件有关；提出BDFM与电网联立求解潮流模型。对于受功率调度的BDFM，发现有功参考值在低风速下可能得 

不到满足，将导致潮流发散；提出两阶段潮流模型：首先判断功率调度是否有效，然后选择 BDFM潮流约束和求解方法。为 

改善潮流收敛性，提出基于转差率或支路功率的BDFM初值算法。给出IEEE RTS系统中BDFM参数计算结果，以验证所提 BDFM 

潮流算法的可行性和正确性。 
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0 引言 

无刷双馈异步电机 (BDFM)可用于变速驱 

动f1-2]或风力发电【3 】。风力机捕捉风能经传动系统 

送至BDFM转子，转化为电能注入电网。BDFM 可 

视为两个同轴相连的异步电机I5。。J。变流器 VSCg维 

持直流电容电压、发出无功。变流器 VSCc用于调 

节控制绕组 CWl7 J，使得 BDFM 转速、功率因数 

可调，因而比笼型异步电机更灵活。由于只有部分 

功率流过变流器，经济成本低于直驱式风电机组。 

由于变流器连接定子而非转子，不需要滑环和电刷， 

基金项目：国家自然科学基金 (51277049) 

因而比普通双馈异步电机 (DFIG)可靠性更高。 

BDFM 的运行，可采用直接转矩控制【9]，或者 

基于定子／转子磁链定向的矢量控制[10-11]。对应背靠 

背变流器，可建立双坐标系，也可将其归算为单坐 

标系，即功率绕组的同步坐标系[12-13]。基于单坐标 

系 dq表达形式，可以得到各绕组在 xy坐标系下的 

稳态电压、电流和功率关系。例如，若电网接口电 

压和 VSCc交流侧电压已知，由等效电路[14-16J，可 

估计功率绕组 (PW)、控制绕组 (Cw)、转子绕组 

功率，以及能量转换效率[17-20】。但对于并网BDFM， 

接口电压由电网潮流决定，VSCc交流电压幅值和 

相角由无功出力和两侧有功平衡决定，同样取决于 

电网潮流。因此将 VSCc当作恒定电压源来求解 
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BDFM稳态参数，应用价值有限，需要建立其并网 

潮流求解算法。 

现有国内、国外文献中尚未发现BDFM潮流算 

法。其建模难点，不仅在于电机结构复杂。首先， 

最大功率跟踪 (MPPT)方式下，BDFM 有功出力 

不仅仅取决于风速。由于容量小而电阻大，内部损 

耗不能忽略。而损耗与绕组电流有关，后者又取决 

于无功和电压，因此BDFM 有功出力与电网潮流有 

关，在求解潮流之前未知。其次，随着并网容量增 

加，BDFM 需接受电网调度，以降低风电随机波动、 

减少快速备用容量[21-23]。与传统火电／水电机组不 

同，在低风速时BDFM 调度出力未必可实现，此时 

潮流无解。第三，BDFM 约束方程比其他风电机组 

多，在超同步／次同步间转换时，待求解变量可能振 

荡，导致潮流收敛性很差。 

基于 BDFM等效电路，研究了其潮流建模及收 

敛性问题。提出MPPT方式下 BDFM潮流方程。此 

时由于有功出力未知，电机与电网方程须联立求解， 

接口节点有一个有功约束和两个无功约束。对于受 

电网调度 BDFM，提出两阶段潮流模型。第一阶段 

按MPPT方式，计算最大有功出力，判断调度值能 

否满足。如果满足，将 BDFM 视为 PQ节点。计算 

电网潮流，得到接口电压后，计算 BDFM 内部参数。 

鉴于平电压启动条件下 BDFM 收敛性较差，提出根 

据转差率或支路有功设置初值以改善收敛性。计算 

结果验证了算法正确性。 

1 MPPT方式下 BDFM潮流模型 

对图 1所示BDFM风电机组，基于PW 同步坐 

标系，建立等效电路 (图 2)，其中下标 P表示接 

口节点和 PW，C表示 CW 和 VSCc，g表示 VSCg， 

r表示转子，T表示变压器，BDFM表示 BDFM 总 

体参数。BDFM铁损相对较大，但远比铜损较小， 

将其忽略后，励磁支路简化为对地电抗 和 。。 

图 1 BDFM风电机组 

Fig．1 BDFM for wind energy conversion 

VSCg VSCc 

图2 BDFM等值电路 

Fig．2 Equivalent circuit of BDFM 

忽略变流器损耗，BDFM 输 出功率与绕组 电流 

有关式(1)，而电流又取决于节点电压和绕组无功， 

最终依赖于电网潮流分布。MPPT方式下，即使风 

速、风力机转速 CO ，及捕捉功率 都不变，在电网 

潮流求解之前BDFM有功出力未知，因此需要联立 

求解电机和电网的潮流约束。 

尸RDFM=ewf一△尸HDFM= 

一 ( +IZRr+ 2 +I2Rg) 
对节点P，从电网侧看功率约束方程如式(2)和 

式(3)，其中下标 sys表示电网，set表示设定参考值。 

ys1p= DFM—Re( DFM)= 
一 Pp即一 g—Re(Vpl；DFM)=0(2) 

△Qlsy。，p= DFM’se 一Im(VplBDFM)=0(3) 
从电机侧看，节点P只有无功功率约束： 

△Qp=一 冲一Qp 一 D M，。虬=0 (4) 
节点 有功和无功潮流约束为 

= 一  

，

p 一 
， 

= 0 (5) 

△ =一 
， 

一  

冲 一  
， 

= 0 (6) 

节点re有功和无功潮流约束为 
= 一 Prc， — Pr

o， 

= 0 (7) 

△Ore=一Qr~
，

m 一  一 Oro
，
。

= 0 (8) 

节点g有功和无功潮流约束为 
= 一  

， 

一

尸卸：0 (9) 

△ = 
， 

就一 =0 (1o) 

定、转子有功平衡见式(11)。其等值形式为式 

(12)，其中PM是输出机械功率。由此得到电磁功率 

和机械功率平衡式(13)。 

Re( )+Re[ ]=12Ro+12 R ~+ 争( ) 
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Re(VZ)+Ro(VZ)：I2R + 足+12Ro+PM(12) 

△PM=Re( )+Re( )一 ， 
I —I 一I2R

c 一  

忽略传动损耗，PM=—尸w ，其中风力机捕捉功 

率 由功率系数 CD决定式(14)，其中：P是空气密 

)~(kg／m )；D 是风速(rn／s)；A=r,R 是扫风面积(m )； 

尺是风力机半径(m)；PN是 BDFM额定容量(Mw)。 

= (14) 
。 』 N 

C口是叶尖速比 和桨距角 的函数式(15) J， 

其中 c ～cs是系数项。对于给定风速，通过 CD函数 

搜索对应风力机最大出力 蛐 的最优转速 09 向 。 

是停运部分风电机组以降低风电场出力。其实对于 

变速风电机组，通过设置转速低于最优转速，可以 

将其出力控制在设定值。这样可以避免风电机组反 

复起停，平抑风电功率波动，降低快速旋转备用机 

组容量【2引，提高风电系统运行经济性和可靠性。 

如果BDFM可发有功出力大于调度出力，则调 

度有效。此时BDFM可视为一个 PQ节点，代入现 

有潮流模型，得到接口节点电压幅值和相角为 

=嘲 (18) 
利用接口节点出力和电压，计算BDFM 内部参 

数。由于 BDFM 出121有功己知，增加约束式(19)， 

共有 9个约束式(20)，独立求解。若采用桨距角控 

制，将 替换为 △ ，约束个数不变。 

cp=c1(~-一 、1e一 (，5) =一Pp冲一Pp 一PB阱 d=。 ( 9) 
PW 转差率 S。和风力机转速 ∞ ，的转换关系如 

式(16)，其中 是增速比，09。是同步角速度 (rad／s)。 

。
： l一 ：1一 (16) 

在 MPPT方式下，联立 BDFM 功率约束和电网 

潮流方程如式(17)，其中 l，是雅可比矩阵。对于接 

口节点，有 1个有功方程 (对外)，2个无功约束 

(对内、对外)。每增加一台BDFM，新增 8个约 

束方程。 

+『， L‘，
BDFM ,sys 

△ 

△V 

△ 

AVIp 

△ 

A 

△ 

△ 

△ 

△ 

2 功率调度方式 BDFM潮流模型 

+ DFM 

△ 

AVrp 

△ 

A 

△ 

△ 

△ 

AVg 

As 

(20) 

一

般实际调度目标相对固定，而风速一直变化。 

当风速较低时，BDFM最大出力可能达不到调度目 

标，导致上式无实际解。因此对于给定风速，需要 

f】7、 预先判断BDFM功率调度是否有效。 

对接受电网调度的BDFM，提出两阶段潮流模 

型 (图3)。首先按照 MPPT方式，计算 BDFM 最 

大出力，将其与调度 目标比较。如果前者小于后者， 

说明调度无效，该机组仍处于MPPT方式。否则调 

度有效，依次计算电网潮流和 BDFM 内部参数。 

当风电机组出力完全由随机风速时，需要大量 

的备用容量。如果象欧洲部分国家风电Ll：：ff0达到 

10％甚至 20％多，若不调度风电，仅凭储能容量远 

远不够，而完全依赖火电／火电机组提供备用，经济 

性和可靠性将很难接受。目前我国电网风电调度， 

3 改善收敛性的BDFM初值方法 

按平电压启动设置BDFM 内部节点电压初值， 

潮流收敛性较差，因此需要改善其初值，主要是节 

点re和 c电压相角。研究发现，在 MPPT方式下， 

可根据支路功率或转差率设置初值；在有效功率调 

度方式下算 BDFM 参数时，可以沿用 MPPT方式下 

结果作为其初值。 
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输入风速 

取BDFM最优转速和设定无功出力， l MPPT 

潮流计算，得~IJMPPT方式最大出力 l方式 

小于调度出力? 

1否 

是／BDFM最大出力＼否 r＼
小于调度出力 

虾l 蕊  约束 l匕=：：：： ：：： ：： 

潮流计算，得~tJBDFM端电压 

根据调度出力和端电压，计算 

BDFM参数 

输出电网~UBDFM潮流解 

调度 

方式 

图3受调度BDFM潮流算法 

Fig．3 Power flow algorithm for BDFM under dispatch 

3．1根据转差率设定初值 

设PW 极对数为Pp，磁场旋转频率和角速度分 

别为 和 np；CW 相应参数分别为P。、 和 。。两 

个定子绕组磁场可能同向或反向，以+和一表示。转 

子等效极对数Pr=pp 。，转速 n 为 

nr 

P +p。nc
一

60(fp-+A) 
P。+Pp Pp+Pc 

(21) 

定子绕组和转子绕组1'9的转差率定义见式 

(22)、式(23)。定子绕组之间的转差率见式(24)。 

np-- nr

= 盟
(Pp+
巫
Pc)fp (22) 

警 

将式(22)和式(23)代入式(24)，得式(25)。由此 

可见，对于 S、S。和S。，知道其中一个即可推出另外 

两个。 

：  ：  L + (25) 

p 
Pp+Pc Pp+Pc 

如果忽略风力机，采用的恒 模型计算结果与 

其初始假设相互矛盾。若计及风力机模型，BDFM 

潮流收敛性极差，原因在于部分电压和电阻与转差 

有关。对于电机等效电路内部节点，一般按照平电 

压启动，即1 0。当转差率从正变负(或由负变正)， 

哪怕只是变化一点点，潮流解也将大幅振荡，很容 

易发散。 

因此提出改进平电压启动算法，不要求电压初 

始幅值为1，初始相角为0，而是根据转速初值设置 

电压初值。 

=  

， 
=

0,Sp>0

．
(26) 

=  三三 (27) 
这样，节点电压 和 不满足平电压启动， 

但是等效电压满足平电压启动。 

一

Vro
：  ：

1ZO， ：．K zo
o

： 1ZO (28) 

p p 
S S 

从而有可能改善收敛性。根据转差率设置电压 

幅值／相角初值，实现非常简单。缺点是当调度出力 

与最大出力差距较多时，转差率初值和最终解差异 

较大。特别是如果两者穿越同步转速时，潮流解仍 

有可能振荡甚至不收敛。 

3．2根据支路功率设定初值 

定义 PW 和 CW 提供的电磁功率 PZMp和 

为 

=Re( )=Re( )一 (29) 

M。= Re( )=Re( )一 (30) 
由式(12)一式(11)× 得式(3 1)。将式(29)代入得式 

(32)。 

-(1 Re( )-(1 一(、1一 1) 

尸M_(1 )‰一l卜 j (32) 
由式(12)一式(11)得式(33)。将式(30)代入，得式 

(34)。 

( 一 ]Re( )=c 一 ] 足+( 一 ) 足+PM c33 

尸M=( 一 ] M。一( 一寺] R c34， 
联立式(32)和式(34)，消去尸M，得 

sp(s。一 ) = ( 一 ) +(足一 ) 足(35 

忽略转子电阻，得PEMp和PEM。比值式(36)。忽 

略 、RT、R。，即为尸pg和Pp，rp的比值。由Pp，rp和 g 

之和为—lPBDFM，可估计Pp，rp和Ppg。 
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： 一  ： 一  生  f361 
PEMp c 尸p冲 

若任一支路l『有功潮流尸 见式(37)，假设其端电 

压为额定值，则有式(38)。两边取平方，求解该一 

元二次方程，得sin 0f『。若0i初值已知，则由 可大 

致设定oj初值。 

=器 
√1一sin 6：『= 一 ( + )+ sinO,j(38) 
根据支路有功，可以设置电压相角初值，但不 

能给出幅值初值。当绕组电阻较大时，误差较大。 

4 算例分析 

算例采用 IEEE RTS节点测试系统 (图4)I2引。 

在节点 3和 19，通过降压变压器，连接两个风电场 

(节点 25和 26，记为 1#311 2}}风电场)，分别拥有 

50和 60台BDFM。风力机叶片半径 l0．4 m，C口函 

数系数为C1=25，c2=9．41 1 8，c3=1，c4=20，C5=0．2【3J。增 

速比t／=16，极对数P。=3，P。=l。BDFM 单机容量为 

4 kw。以此为基准，绕组阻抗为JR。=0．082 7 pu， 
= 0_020 2 pu， p=1．632 4 pu，R =0．061 5 pu，Xr= 

0．167 5 pu， 。=0．138 1 pu， =0．049 4 pu， =1。718 3 

pu，Ra-=0．03 pu，Xr=0．05 puL1j。电机转速允许范围 

为一40％一40％。将同一风电场BDFM聚合成一台，按 

电网基准容量 100 MVA，折算阻抗和容量等参数。 

图4IEEERTS测试系统 

Fig．4 IEEE RTS test system 

4．1 MPPT方式下 BDFM 潮流解 

取两个风电场风速分别为 10 m／s和4．5 m／s，计 

算MPPT方式下风力机最大出力和最优转速，以及 

并网后BDFM 参数，结果见表 1。作为对比，若两 

个风电场不并网，节点 25和节点 26电压分别为 

0．955 9 pu ／一0．248 1 rad和 0．991 6 puZ一0．025 7 

rad。显然 BDFM 注入功率越大，对电网潮流影响 

越明显。 

表 1 MPPT方式下 BDFM潮流解 

Table 1 Power flOW solution of BDFM under MPPT mode 

4．2有功调度下 BDFM潮流解 

以其 自身容量为基准，设定 l}}风电场参考出力 

PBDFMset 0．4 pu， )BDFMset=0．2 pu，Qgset=0．1 pu。对 

2≠}风电场，设定PBDFM。et-0．6 pu，QBDFMset=0．2 pu， 

Q州--0．1 pu。按电网基准 100 MVA折算，分别为 

0．000 8pu、0．000 4pu、0．000 2pu和 0．001 44pu、 

0．000 48 pu、0．000 24 pu。由表 1知，1≠}风电场可发 

出力为 0．001 7 pu，大于参考值，调度有效；2}}风电 

场可发出力 0．000 6 pu，小于参考值，调度无效。 

按参考值设定 l}}风电场出力，视其为PQ节点； 

2}}风电场仍与电网方程联立，求解电网潮流分布。 

节点25、26电压分别为0．956 0 pul一0．248 0 rad和 

0．991 6 puZ一0．025 7 rad。 

按照调度参考值，以及接口节点电压，分别按 

转速控制和桨距角调节方式，计算 1 风电场参数， 

结果见表 2。在调度控制方式下，由于有功出力受 

限，导致 BDFM 内部参数与MPPT方式下不同。采 

用转速控制或桨距角调节，都可以实现 BDFM 降额 

运行，从电网角度，两者效果相同。但是从电机来 
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看，两者调节效果不同。桨距角调节只影响风力机 

出力；转速调节不仅影响风力机出力，还影响电机 

转速和绕组阻抗。 

表 2有效调度方式下 BDFM 潮流解 

Table 2 Power flow solution of BDFM under effective dispatch 

为了进一步验证算法正确性，逐渐降低有功参 

考出力，计算相应转速或桨距角，以及BDFM电机 

能量转换效率见表3、表4。结果表明： 

(1)通过适当降低转速或者桨距角，都可以满 

足电网调度对BDFM出力要求。 

(2)显然，BDFM参考出力越低，电机效率越 

低。桨距角控制时，电机效率高于转速调节。 

表3基于转速调节的有功调度结果 

Table 3 Power dispatch by adjusting rotor speed 

4．3 BDFM潮流收敛性 

按平电压启动条件，设置电网和 BDFM 各节点 

电压幅值和相角，BDFM按 MPPT方式运行，求解 

电网潮流，迭代误差 (最大偏差量，指数表示)见 

图 5，迭代 100次后误差仍然很大，不能满足收敛 

条件。 

表 4基于桨距角调节的有功调度结果 

Table 4 Power dispatch by adjusting pitch angle 

0 20 40 60 80 10O 

迭代步骤 

图 5平电压启动的迭代误差 

Fig．5 Iteration error with flat voltage start 

表 1～表 4采用了改进初值算法。鉴于算例选择 

的BDFM 电阻较大，根据 MPPT方式下风力机转差 

率，设定节点rc和C电压初值。图6给出迭代误差。 

结果表明，引入 BDFM并未显著降低电网潮流收敛 

速度。无论 MPPT方式下，还是电网调度方式下， 

经过 4～5次迭代，最大偏差均降至 l0 。pu以下， 

证实所提初值算法对改善潮流收敛性的效果。 

j 

e 
jIjJj 

靛 
．K 

嘣 

O 1 2 3 4 5 

迭代步骤 

图 6改进平电压启动时迭代误差 

Fig．6 Iteration error with modified flat voltage start 
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5 结论 

提出了无刷双馈电机在最大功率点跟踪和有 

功调度方式下潮流模型；为提高收敛性，提出了改 

进平电压启动算法，证实以下结论： 

(1)BDFM 有功出力不仅取决于风速和风力机 

转速，还取决于 BDFM 内部损耗，后者与电网运行 

条件有关，因此MPPT方式下，需要联立求解BDFM 

和电网潮流约束。 

(2)考虑可发有功出力与调度参考出力大小， 

不能将受调度 BDFM 简单设置为PQ节点，而应先 

判断有功调度是否有效，然后选择联立或独立求解 

算法。 

(3)含 BDFM 风电系统潮流收敛性，与 BDFM 

参数初值极为密切。根据转差率修正相角初值以满 

足平电压启动条件，可显著改善潮流收敛性。 
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