

# TPS2521xx 具有输入反极性保护功能的 2.7V 至 5.7V、4A、31 mΩ 真反向电流阻断电子保险丝

## 1 特性

- 宽工作输入电压范围：2.7V 至 5.7V
- 绝对最大值为 28V
- 可耐受高达 -15V 的负电压
- 具有低导通电阻的集成式背对背 FET： $R_{ON} = 31 \text{ m}\Omega$  (典型值)
- 具有真反向电流阻断功能的理想二极管运行状态
- 快速过压钳位 (OVC) , 可通过引脚选择阈值 (3.8V、5.7V) , 响应时间为 5  $\mu\text{s}$  (典型值)
- 过流保护，具有负载电流监控器输出 (ILM)
  - 有效电流限制响应
  - 可调节阈值 ( $I_{LIM}$ )：0.5A 至 4.44A
    - $I_{LIM} > 1\text{A}$  时精度为  $\pm 10\%$
  - 可调瞬态消隐时器 (ITIMER) , 支持高达  $2 \times I_{LIM}$  的峰值电流
  - 输出负载电流监控精度： $\pm 6\%$  ( $I_{OUT} \geq 1\text{A}$ )
- 通过快速跳变响应实现短路保护
  - 响应时间为 500 ns (典型值)
  - 可调节 ( $2 \times I_{LIM}$ ) 阈值和固定阈值
- 带有可调节欠压锁定阈值 (UVLO) 的高电平有效使能输入
- 可调节的输出压摆率控制 ( $dV/dt$ )
- 过温保护
- 具有可调节阈值 (PGTH) 的电源正常状态指示 (PG)
- UL 2367 认证
  - 文件编号 E169910
  - $R_{ILM} \geq 750 \Omega$
- 获得 IEC 62368-1 CB 认证
- 小尺寸：QFN 2mm × 2mm , 0.45mm 间距

## 2 应用

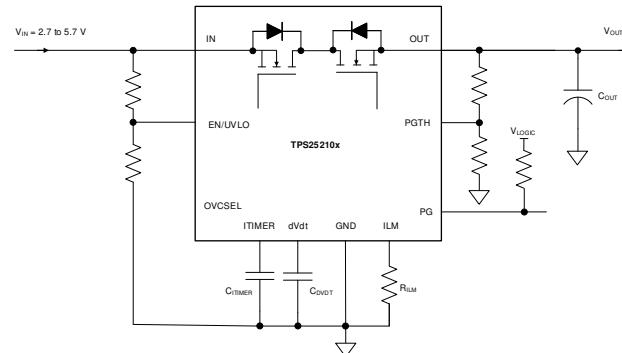
- 适配器输入保护
- 企业级存储 - RAID/HBA/SAN/eSSD
- USB PD 端口保护
- 服务器、PC 主板、附加卡
- 显示器和扩展坞

## 3 说明

TPS2521x 系列电子保险丝是采用小型封装的高度集成电路保护和电源管理解决方案。此类器件只需很少的外部元件即可提供多种保护模式，能够非常有效地抵御过载、短路、电压浪涌、反极性和过多浪涌电流。借助集成的背对背 FET，始终可以阻止从输出端到输入端的反向电流流动，从而使该器件非常适合需要负载侧能量保持存储解决方案以防输入电源发生故障的系统。

输出电流限制级别可通过单个外部电阻设定。还可能通过测量整个电流限制电阻的压降实现对输出负载电流的准确感应。

浪涌电流有特别要求的应用可以通过单个外部电容器设定输出转换率。通过将输出钳制到安全的固定最大电压 (可通过引脚选择)，可以保护负载免受输入过压情况的影响。


器件采用 2mm × 2mm 10 引脚 HotRod QFN 封装，旨在改善热性能并减小系统尺寸。

这些器件的额定工作结温范围为 -40°C 至 +125°C。

### 器件信息

| 器件型号         | 封装 <sup>(1)</sup> | 封装尺寸 (标称值) |
|--------------|-------------------|------------|
| TPS2521xxRPW | QFN (10)          | 2mm × 2mm  |

(1) 如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。



简化版原理图



本文档旨在为方便起见，提供有关 TI 产品中文版本的信息，以确认产品的概要。有关适用的官方英文版本的最新信息，请访问 [www.ti.com](http://www.ti.com)，其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前，请务必参考最新版本的英文版本。

English Data Sheet: [SLVSFX8](http://SLVSFX8)

## Table of Contents

|                                                |           |                                                                            |           |
|------------------------------------------------|-----------|----------------------------------------------------------------------------|-----------|
| <b>1 特性</b> .....                              | <b>1</b>  | <b>9 Application and Implementation</b> .....                              | <b>30</b> |
| <b>2 应用</b> .....                              | <b>1</b>  | 9.1 Application Information.....                                           | 30        |
| <b>3 说明</b> .....                              | <b>1</b>  | 9.2 Single Device, Self-Controlled.....                                    | 30        |
| <b>4 Revision History</b> .....                | <b>2</b>  | 9.3 Typical Application.....                                               | 31        |
| <b>5 Device Comparison Table</b> .....         | <b>3</b>  | <b>10 Power Supply Recommendations</b> .....                               | <b>37</b> |
| <b>6 Pin Configuration and Functions</b> ..... | <b>4</b>  | 10.1 Transient Protection.....                                             | 37        |
| <b>7 Specifications</b> .....                  | <b>5</b>  | 10.2 Output Short-Circuit Measurements.....                                | 38        |
| 7.1 Absolute Maximum Ratings.....              | 5         | <b>11 Layout</b> .....                                                     | 39        |
| 7.2 ESD Ratings.....                           | 5         | 11.1 Layout Guidelines.....                                                | 39        |
| 7.3 Recommended Operating Conditions.....      | 6         | 11.2 Layout Example.....                                                   | 40        |
| 7.4 Thermal Information.....                   | 6         | <b>12 Device and Documentation Support</b> .....                           | <b>41</b> |
| 7.5 Electrical Characteristics.....            | 7         | 12.1 Documentation Support.....                                            | 41        |
| 7.6 Timing Requirements.....                   | 9         | 12.2 接收文档更新通知.....                                                         | 41        |
| 7.7 Switching Characteristics.....             | 9         | 12.3 支持资源.....                                                             | 41        |
| 7.8 Typical Characteristics.....               | 10        | 12.4 Trademarks.....                                                       | 41        |
| <b>8 Detailed Description</b> .....            | <b>18</b> | 12.5 Electrostatic Discharge Caution.....                                  | 41        |
| 8.1 Overview.....                              | 18        | 12.6 术语表.....                                                              | 41        |
| 8.2 Functional Block Diagram.....              | 19        | <b>13 Mechanical, Packaging, and Orderable</b><br><b>Information</b> ..... | <b>42</b> |
| 8.3 Feature Description.....                   | 20        |                                                                            |           |
| 8.4 Device Functional Modes.....               | 29        |                                                                            |           |

## 4 Revision History

注：以前版本的页码可能与当前版本的页码不同

| <b>Changes from Revision * (March 2021) to Revision A (March 2022)</b> | <b>Page</b> |
|------------------------------------------------------------------------|-------------|
| • 更新了 UIL/IEC 认证状态.....                                                | 1           |
| • Corrected the ESD Ratings to show CDM testing was per JS-002.....    | 5           |
| • Updated 表 8-4 .....                                                  | 27          |

## 5 Device Comparison Table

| Part Number | Overvoltage Response             | Overcurrent Response | Response to Fault |
|-------------|----------------------------------|----------------------|-------------------|
| TPS25210A   | Pin Selectable OVC (3.8 V/5.7 V) | Active Current Limit | Auto-Retry        |
| TPS25210L   |                                  |                      | Latch-Off         |

## 6 Pin Configuration and Functions

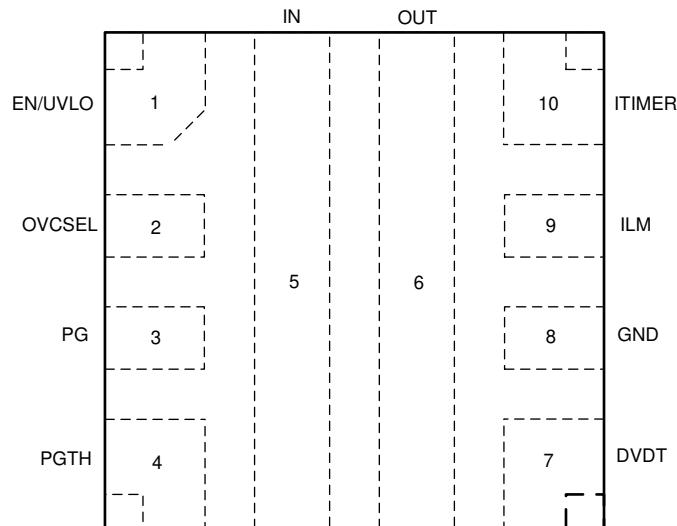



图 6-1. TPS2521x RPW Package 10-Pin QFN Top View

表 6-1. Pin Functions

| PIN     |     | TYPE           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-----|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME    | NO. |                |                                                                                                                                                                                                                                                                                                                                                                             |
| EN/UVLO | 1   | Analog Input   | Active High Enable for the device. A Resistor Divider on this pin from input supply to GND can be used to adjust the undervoltage lockout threshold. <i>Do not leave floating</i> . Refer to <a href="#">节 8.3.2</a> for details.                                                                                                                                           |
| OVCSEL  | 2   | Analog Input   | Overvoltage clamp threshold select pin. Refer to <a href="#">节 8.3.3</a> for details.                                                                                                                                                                                                                                                                                       |
| PG      | 3   | Digital Output | Power Good indication. This pin is an Open Drain signal which is asserted High when the internal power path is fully turned ON and PGTH input exceeds a certain threshold. Refer to <a href="#">节 8.3.9</a> for more details.                                                                                                                                               |
| PGTH    | 4   | Analog Input   | Power Good Threshold. Refer to <a href="#">节 8.3.9</a> for more details.                                                                                                                                                                                                                                                                                                    |
| IN      | 5   | Power          | Power input                                                                                                                                                                                                                                                                                                                                                                 |
| OUT     | 6   | Power          | Power output                                                                                                                                                                                                                                                                                                                                                                |
| DVDT    | 7   | Analog Output  | A capacitor from this pin to GND sets the output turn on slew rate. Leave this pin floating for the fastest turn on slew rate. Refer to <a href="#">节 8.3.4.1</a> for details.                                                                                                                                                                                              |
| GND     | 8   | Ground         | This pin is the ground reference for all internal circuits and must be connected to system GND.                                                                                                                                                                                                                                                                             |
| ILM     | 9   | Analog Output  | This pin is a dual function pin used to limit and monitor the output current. An external resistor from this pin to GND sets the output current limit threshold during start-up as well as steady state. The pin voltage can also be used as analog output load current monitor signal. <i>Do not leave floating</i> . Refer to <a href="#">节 8.3.4.2</a> for more details. |
| ITIMER  | 10  | Analog Output  | A capacitor from this pin to GND sets the overcurrent blanking interval during which the output current can temporarily exceed set current limit (but lower than fast-trip threshold) before the device overcurrent response takes action. Leave this pin open for fastest response to overcurrent events. Refer to <a href="#">节 8.3.4.2</a> for more details.             |

## 7 Specifications

### 7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

| Parameter     |                                                                                       | Pin       | MIN                       | MAX                     | UNIT               |
|---------------|---------------------------------------------------------------------------------------|-----------|---------------------------|-------------------------|--------------------|
| $V_{IN}$      | Maximum Input Voltage Range, $-40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C}$  | IN        | max(-15, $V_{OUT} - 21$ ) |                         | 28                 |
|               | Maximum Input Voltage Range, $-10^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C}$  |           | max(-15, $V_{OUT} - 22$ ) |                         | 28                 |
| $V_{OUT}$     | Maximum Output Voltage Range, $-40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C}$ | OUT       | -0.3                      | min(28, $V_{IN} + 21$ ) |                    |
|               | Maximum Output Voltage Range, $-10^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C}$ |           | -0.3                      | min(28, $V_{IN} + 22$ ) |                    |
| $V_{OUT,PLS}$ | Minimum Output Voltage Pulse (< 1 $\mu\text{s}$ )                                     | OUT       | -0.8                      |                         |                    |
| $V_{EN/UVLO}$ | Maximum Enable Pin Voltage Range <sup>(2)</sup>                                       | EN/UVLO   | -0.3                      | 6.5                     | V                  |
| $V_{OVCSEL}$  | Maximum OVCSEL Pin Voltage Range                                                      | OVCSEL    | Internally Limited        |                         |                    |
| $V_{dVdT}$    | Maximum $dVdT$ Pin Voltage Range                                                      | $dVdT$    | Internally Limited        |                         |                    |
| $V_{ITIMER}$  | Maximum ITIMER Pin Voltage Range                                                      | ITIMER    | Internally Limited        |                         |                    |
| $V_{PGTH}$    | Maximum PGTH Pin Voltage Range <sup>(2)</sup>                                         | PGTH      | -0.3                      | 6.5                     | V                  |
| $V_{PG}$      | Maximum PG Pin Voltage Range                                                          | PG        | -0.3                      | 6.5                     | V                  |
| $V_{ILM}$     | Maximum ILM Pin Voltage Range                                                         | ILM       | Internally Limited        |                         |                    |
| $I_{MAX}$     | Maximum Continuous Switch Current                                                     | IN to OUT | Internally Limited        |                         |                    |
| $T_J$         | Junction temperature                                                                  |           | Internally Limited        |                         |                    |
| $T_{LEAD}$    | Maximum Lead Temperature                                                              |           | 300                       |                         |                    |
| $T_{STG}$     | Storage temperature                                                                   |           | -65                       | 150                     | $^{\circ}\text{C}$ |

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) If this pin has a pull-up up to  $V_{IN}$ , it is recommended to use a resistance of 350 k $\Omega$  or higher to limit the current under conditions where IN can be exposed to reverse polarity.

### 7.2 ESD Ratings

|             |                         |                                                                   | VALUE      | UNIT |
|-------------|-------------------------|-------------------------------------------------------------------|------------|------|
| $V_{(ESD)}$ | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup> | $\pm 2000$ | V    |
|             |                         | Charged device model (CDM), ANSI/ESDA/JEDEC JS-002 <sup>(2)</sup> | $\pm 500$  |      |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

## 7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

| Parameter     |                                                         | Pin       | MIN                     | MAX                | UNIT             |
|---------------|---------------------------------------------------------|-----------|-------------------------|--------------------|------------------|
| $V_{IN}$      | Input Voltage Range                                     | IN        | 2.7                     | 5.7 <sup>(1)</sup> | V                |
| $V_{OUT}$     | Output Voltage Range                                    | OUT       | min (23, $V_{IN}$ + 20) |                    | V                |
| $V_{EN/UVLO}$ | Enable Pin Voltage Range                                | EN/UVLO   |                         | 5 <sup>(2)</sup>   | V                |
| $V_{dVdT}$    | dVdT Capacitor Voltage Rating                           | dVdt      | $V_{IN}$ + 5 V          |                    | V                |
| $V_{PGTH}$    | PGTH Pin Voltage Range                                  | PGTH      |                         | 5 <sup>(3)</sup>   | V                |
| $V_{PG}$      | PG Pin Voltage Range                                    | PG        |                         | 5 <sup>(3)</sup>   | V                |
| $V_{ITIMER}$  | ITIMER Pin Capacitor Voltage Rating                     | ITIMER    | 4                       |                    | V                |
| $R_{ILM}$     | ILM Pin Resistance                                      | ILM       | 750                     | 6650               | $\Omega$         |
| $I_{MAX}$     | Continuous Switch Current, $T_J \leq 125^\circ\text{C}$ | IN to OUT |                         | 4                  | A                |
| $T_J$         | Junction temperature                                    |           | - 40                    | 125                | $^\circ\text{C}$ |

- (1) The input operating voltage should be limited to the selected Output Voltage Clamp threshold as listed in the Electrical Characteristics section
- (2) For supply voltages below 5V, it is okay to pull up the EN pin to IN directly. For supply voltages greater than 5V or systems which can be exposed to reverse polarity on input supply, it is recommended to use a pull-up resistor with a minimum value of 350  $\text{k}\Omega$ .
- (3) For systems which can be exposed to reverse polarity on input supply, if this pin is referred to input supply, it is recommended to use a pull-up resistor with a minimum value of 350  $\text{k}\Omega$  to limit the current through the pin.

## 7.4 Thermal Information

| THERMAL METRIC <sup>(1)</sup> |                                              | TPS2521xx           | UNIT                      |
|-------------------------------|----------------------------------------------|---------------------|---------------------------|
|                               |                                              | RPW (QFN)           |                           |
|                               |                                              | 10 PINS             |                           |
| $R_{\theta JA}$               | Junction-to-ambient thermal resistance       | 41.7 <sup>(2)</sup> | $^\circ\text{C}/\text{W}$ |
|                               |                                              | 74.5 <sup>(3)</sup> | $^\circ\text{C}/\text{W}$ |
| $\Psi_{JT}$                   | Junction-to-top characterization parameter   | 1                   | $^\circ\text{C}/\text{W}$ |
| $\Psi_{JB}$                   | Junction-to-board characterization parameter | 20 <sup>(2)</sup>   | $^\circ\text{C}/\text{W}$ |
|                               |                                              | 27.6 <sup>(3)</sup> | $^\circ\text{C}/\text{W}$ |

- (1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.
- (2) Based on simulations conducted with the device mounted on a custom 4-layer PCB (2s2p) with 8 thermal vias under device
- (3) Based on simulations conducted with the device mounted on a JEDEC 4-layer PCB (2s2p) with no thermal vias under device

## 7.5 Electrical Characteristics

(Test conditions unless otherwise noted)  $-40^\circ\text{C} \leq T_J \leq 125^\circ\text{C}$ ,  $V_{IN} = 5\text{ V}$ , OUT = Open,  $V_{EN/UVLO} = 2\text{ V}$ , OVCSEL = Open,  $R_{ILM} = 750\ \Omega$ ,  $dV/dT$  = Open, ITIMER = Open, PGTH = Open, PG = Open. All voltages referenced to GND.

| Test Parameter                               | Description                                                                               | MIN   | TYP  | MAX   | UNITS            |
|----------------------------------------------|-------------------------------------------------------------------------------------------|-------|------|-------|------------------|
| <b>INPUT SUPPLY (IN)</b>                     |                                                                                           |       |      |       |                  |
| $V_{UVP(R)}$                                 | IN Supply UVP Rising Threshold                                                            | 2.44  | 2.53 | 2.64  | V                |
| $V_{UVP(F)}$                                 | IN Supply UVP Falling Threshold                                                           | 2.35  | 2.42 | 2.55  | V                |
| $I_{Q(ON)}$                                  | IN Supply Quiescent Current                                                               |       | 411  | 593   | $\mu\text{A}$    |
| $I_{Q(ON)}$                                  | IN Supply Current during OVC                                                              |       | 426  | 620   | $\mu\text{A}$    |
| $I_{Q(ON)}$                                  | IN Supply Quiescent Current during RCB, $V_{OUT} = V_{IN} + 1\text{ V}$                   |       | 186  |       | $\mu\text{A}$    |
| $I_{Q(OFF)}$                                 | IN Supply OFF State Current ( $V_{SD(F)} < V_{EN} < V_{UVLO(F)}$ )                        |       | 67   | 130   | $\mu\text{A}$    |
| $I_{SD}$                                     | IN Supply Shutdown Current ( $V_{EN} < V_{SD(F)}$ )                                       |       | 1.62 | 28.7  | $\mu\text{A}$    |
| $I_{INLKG(IRPP)}$                            | IN Supply Leakage Current ( $V_{IN} = -14\text{ V}$ , $V_{OUT} = 0\text{ V}$ )            |       | -3.7 |       | $\mu\text{A}$    |
| <b>ON RESISTANCE (IN - OUT)</b>              |                                                                                           |       |      |       |                  |
| $R_{ON}$                                     | $V_{IN} = 5\text{ V}$ , $I_{OUT} = 3\text{ A}$ , $T_J = 25^\circ\text{C}$                 |       | 31   |       | $\text{m}\Omega$ |
|                                              | $2.7 \leq V_{IN} \leq 5.7\text{ V}$ , $-40^\circ\text{C} \leq T_J \leq 125^\circ\text{C}$ |       |      | 50.2  | $\text{m}\Omega$ |
| <b>ENABLE/UNDERVOLTAGE LOCKOUT (EN/UVLO)</b> |                                                                                           |       |      |       |                  |
| $V_{UVLO(R)}$                                | EN/UVLO Rising Threshold                                                                  | 1.183 | 1.2  | 1.223 | V                |
| $V_{UVLO(F)}$                                | EN/UVLO Falling Threshold                                                                 | 1.076 | 1.1  | 1.116 | V                |
| $V_{SD(F)}$                                  | EN/UVLO Falling Threshold for lowest shutdown current                                     | 0.45  | 0.73 |       | V                |
| $I_{ENLKG}$                                  | EN/UVLO Leakage Current                                                                   | -0.1  |      | 0.1   | $\mu\text{A}$    |
| <b>OUTPUT VOLTAGE CLAMP (OUT)</b>            |                                                                                           |       |      |       |                  |
| $V_{OVC}$                                    | Overvoltage Clamp Threshold, OVCSEL = Shorted to GND                                      | 3.65  | 3.88 | 4.1   | V                |
|                                              | Overvoltage Clamp Threshold, OVCSEL = Open                                                | 5.25  | 5.74 | 6.2   | V                |
| $V_{CLAMP}$                                  | Output Voltage During Clamping, OVCSEL = Shorted to GND, $I_{OUT} = 10\text{ mA}$         | 3.2   | 3.82 | 4.2   | V                |
|                                              | Output Voltage During Clamping, OVCSEL = Open, $I_{OUT} = 10\text{ mA}$                   | 5     | 5.58 | 6.1   | V                |
| <b>OVERCURRENT PROTECTION (OUT)</b>          |                                                                                           |       |      |       |                  |
| $I_{LIM}$                                    | Current Limit Threshold, $R_{ILM} = 6.65\text{ k}\Omega$                                  | 0.425 | 0.5  | 0.575 | A                |
|                                              | Current Limit Threshold, $R_{ILM} = 3.32\text{ k}\Omega$                                  | 0.85  | 1.0  | 1.15  | A                |
|                                              | Current Limit Threshold, $R_{ILM} = 1.65\text{ k}\Omega$                                  | 1.8   | 2.02 | 2.2   | A                |
|                                              | Current Limit Threshold, $R_{ILM} = 750\ \Omega$                                          | 3.96  | 4.44 | 4.84  | A                |
| $I_{FLT}$                                    | Circuit Breaker Threshold, ILM Pin Open (Single point failure)                            |       | 0.1  |       | A                |
|                                              | Circuit Breaker Threshold, ILM Pin Short to GND (Single point failure)                    |       | 1.1  | 2.1   | A                |
| $I_{SCGain}$                                 | Scalable Fast Trip Threshold ( $I_{SC}$ ) : $I_{LIM}$ Ratio                               |       | 201  |       | %                |
| $I_{FT}$                                     | Fixed Fast-trip Current Threshold                                                         |       | 22   |       | A                |
| $V_{FB}$                                     | $V_{OUT}$ threshold to exit Current Limit Foldback                                        |       | 1.9  |       | V                |
| $V_{INT}$                                    | ITIMER pin internal pull-up voltage                                                       | 2.3   | 2.52 | 2.72  | V                |
| <b>OVERCURRENT FAULT TIMER (ITIMER)</b>      |                                                                                           |       |      |       |                  |
| $I_{ITIMER}$                                 | ITIMER pin internal discharge current, $I_{OUT} > I_{LIM}$                                | 1.2   | 1.81 | 2.5   | $\mu\text{A}$    |
| $R_{ITIMER}$                                 | ITIMER pin internal pull-up resistance                                                    |       | 15   |       | $\text{k}\Omega$ |
| $\Delta V_{ITIMER}$                          | ITIMER discharge voltage                                                                  | 1.28  | 1.51 | 1.74  | V                |
| <b>OUTPUT LOAD CURRENT MONITOR (ILM)</b>     |                                                                                           |       |      |       |                  |

## 7.5 Electrical Characteristics (continued)

(Test conditions unless otherwise noted)  $-40^\circ\text{C} \leq T_J \leq 125^\circ\text{C}$ ,  $V_{IN} = 5\text{ V}$ , OUT = Open,  $V_{EN/UVLO} = 2\text{ V}$ , OVCSEL = Open,  $R_{ILM} = 750\ \Omega$ ,  $dV/dT$  = Open, ITIMER = Open, PGTH = Open, PG = Open. All voltages referenced to GND.

| Test Parameter                             | Description                                                                                                                     | MIN    | TYP    | MAX    | UNITS                  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|------------------------|
| $G_{IMON}$                                 | Analog Load Current Monitor Gain ( $I_{MON} : I_{OUT}$ ), $I_{OUT} = 0.5\text{ A}$ to $1\text{ A}$ , $I_{OUT} < I_{LIM}$        | 165    | 182    | 200    | $\mu\text{A}/\text{A}$ |
|                                            | Analog Load Current Monitor Gain ( $I_{MON} : I_{OUT}$ ), $I_{OUT} = 1\text{ A}$ to $4\text{ A}$ , $I_{OUT} < I_{LIM}$          | 165    | 182    | 200    | $\mu\text{A}/\text{A}$ |
| <b>REVERSE CURRENT BLOCKING (IN - OUT)</b> |                                                                                                                                 |        |        |        |                        |
| $V_{FWD}$                                  | $V_{IN} - V_{OUT}$ Forward regulation voltage, $I_{OUT} = 10\text{ mA}$                                                         | 5      | 17.4   |        | mV                     |
| $V_{REVTH}$                                | $V_{IN} - V_{OUT}$ threshold for fast BFET turn off (enter reverse current blocking)                                            | - 36.5 | - 29.1 | - 22.3 | mV                     |
| $V_{FWDTH}$                                | $V_{IN} - V_{OUT}$ threshold for fast BFET turn on (exit reverse current blocking)                                              | 83     | 102.2  | 125    | mV                     |
| $I_{OUTLKG(RCB)}$                          | OUT Leakage Current during ON state with RCB, $V_{OUT} = V_{IN} + 1\text{ V}$                                                   |        | 270    |        | $\mu\text{A}$          |
| $I_{REVLKG(OFF)}$                          | Reverse Leakage Current during unpowered condition, $V_{OUT} = 12\text{ V}$ , $V_{IN} = 0\text{ V}$                             |        | 4.8    |        | $\mu\text{A}$          |
| <b>POWER GOOD INDICATION (PG)</b>          |                                                                                                                                 |        |        |        |                        |
| $V_{PGD}$                                  | PG pin voltage while de-asserted, $V_{IN} < V_{UVP(F)}$ , $V_{EN} < V_{SD(F)}$ , Weak pull-up ( $I_{PG} = 26\ \mu\text{A}$ )    |        | 0.67   | 1      | V                      |
|                                            | PG pin voltage while de-asserted, $V_{IN} < V_{UVP(F)}$ , $V_{EN} < V_{SD(F)}$ , Strong pull-up ( $I_{PG} = 242\ \mu\text{A}$ ) |        | 0.78   | 1      | V                      |
|                                            | PG pin voltage while de-asserted, $V_{IN} > V_{UVP(R)}$                                                                         |        | 0      |        | V                      |
| $I_{PGLKG}$                                | PG Pin Leakage Current, PG asserted                                                                                             |        | 0.9    | 3      | $\mu\text{A}$          |
| <b>POWERGOOD THRESHOLD (PGTH)</b>          |                                                                                                                                 |        |        |        |                        |
| $V_{PGTH(R)}$                              | PGTH Rising Threshold                                                                                                           | 1.183  | 1.2    | 1.223  | V                      |
| $V_{PGTH(F)}$                              | PGTH Falling Threshold                                                                                                          | 1.076  | 1.09   | 1.116  | V                      |
| $I_{PGTHLKG}$                              | PGTH Leakage Current                                                                                                            | - 0.1  |        | 0.3    | $\mu\text{A}$          |
| <b>OVERTEMPERATURE PROTECTION (OTP)</b>    |                                                                                                                                 |        |        |        |                        |
| TSD                                        | Thermal Shutdown Rising Threshold, $T_J \uparrow$                                                                               |        | 154    |        | $^\circ\text{C}$       |
| TSD <sub>HYS</sub>                         | Thermal Shutdown Hysteresis, $T_J \downarrow$                                                                                   |        | 10     |        | $^\circ\text{C}$       |
| <b>DVDT</b>                                |                                                                                                                                 |        |        |        |                        |
| $I_{dVdt}$                                 | dVdt Pin Charging Current                                                                                                       | 0.78   | 1.97   | 3.3    | $\mu\text{A}$          |

## 7.6 Timing Requirements

| PARAMETER   |                                                   | TEST CONDITIONS                                                                                 | MIN | TYP | MAX | UNIT    |
|-------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|-----|-----|-----|---------|
| $t_{OVC}$   | Overvoltage clamp response time                   | $V_{IN} > V_{OVC}$ to $V_{OUT} \downarrow$                                                      |     | 5   |     | $\mu s$ |
| $t_{LIM}$   | Current limit response time                       | $I_{OUT} > 1.2 \times I_{LIM}$ & ITIMER expired to $I_{OUT}$ settling to within 5% of $I_{LIM}$ |     | 400 |     | $\mu s$ |
| $t_{SC}$    | Scalable fast-trip response time                  | $I_{OUT} > 3 \times I_{LIM}$ to $I_{OUT} \downarrow$                                            |     | 500 |     | ns      |
| $t_{FT}$    | Fixed fast-trip response time                     | $I_{OUT} > I_{FT}$ to $I_{OUT} \downarrow$                                                      |     | 500 |     | ns      |
| $t_{RST}$   | Auto-Retry Interval after fault (TPS25210A)       |                                                                                                 |     | 110 |     | ms      |
| $t_{SWRCB}$ | Reverse Current Blocking recovery time            | $(V_{IN} - V_{OUT}) > V_{FWDTH}$ to $V_{OUT} \uparrow$                                          |     | 50  |     | $\mu s$ |
| $t_{RCB}$   | Reverse Current Blocking comparator response time | $(V_{OUT} - V_{IN}) > 1.3 \times V_{REVTH}$ to BFET OFF                                         |     | 1   |     | $\mu s$ |
| $t_{PGA}$   | PG Assertion de-glitch                            |                                                                                                 |     | 12  |     | $\mu s$ |
| $t_{PGD}$   | PG De-assertion de-glitch                         |                                                                                                 |     | 12  |     | $\mu s$ |

## 7.7 Switching Characteristics

The output rising slew rate is internally controlled and constant across the entire operating voltage range to ensure the turn on timing is not affected by the load conditions. The rising slew rate can be adjusted by adding capacitance from the  $dVdt$  pin to ground. As  $C_{dVdt}$  is increased it will slow the rising slew rate (SR). See Slew Rate and Inrush Current Control ( $dVdt$ ) section for more details. The Turn-Off Delay and Fall Time, however, are dependent on the RC time constant of the load capacitance ( $C_{OUT}$ ) and Load Resistance ( $R_L$ ). The Switching Characteristics are only valid for the power-up sequence where the supply is available in steady state condition and the load voltage is completely discharged before the device is enabled. Typical Values are taken at  $T_J = 25^\circ C$  unless specifically noted otherwise.  $V_{IN} = 2.7 V$ ,  $R_L = 100 \Omega$ ,  $C_{OUT} = 1 \mu F$

| PARAMETER   |                         | $C_{dVdt} = \text{Open}$ | $C_{dVdt} = 1800 \text{ pF}$ | $C_{dVdt} = 3300 \text{ pF}$ | UNIT    |
|-------------|-------------------------|--------------------------|------------------------------|------------------------------|---------|
| $SR_{ON}$   | Output Rising slew rate | 12.14                    | 0.87                         | 0.5                          | V/ms    |
| $t_{D,ON}$  | Turn on delay           | 0.09                     | 0.6                          | 0.97                         | ms      |
| $t_R$       | Rise time               | 0.17                     | 2.51                         | 4.33                         | ms      |
| $t_{ON}$    | Turn on time            | 0.27                     | 3.11                         | 5.31                         | ms      |
| $t_{D,OFF}$ | Turn off delay          | 64.44                    | 64.44                        | 64.44                        | $\mu s$ |

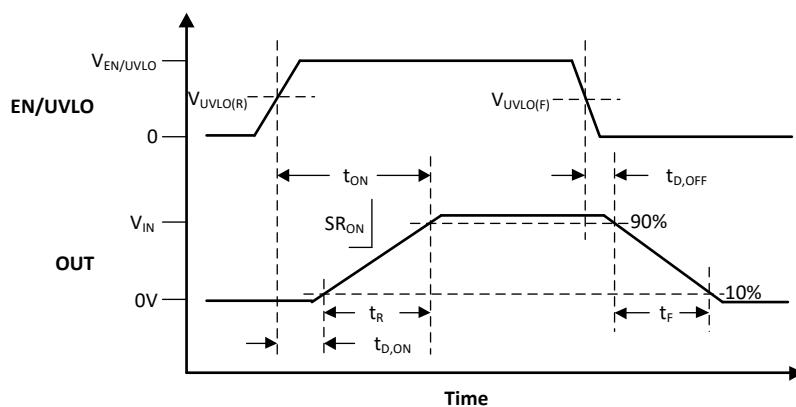



图 7-1. TPS2521xx Switching Times

## 7.8 Typical Characteristics

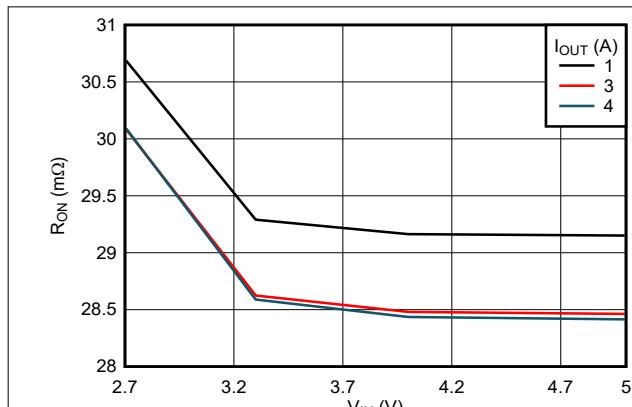



图 7-2. ON-Resistance vs Supply Voltage

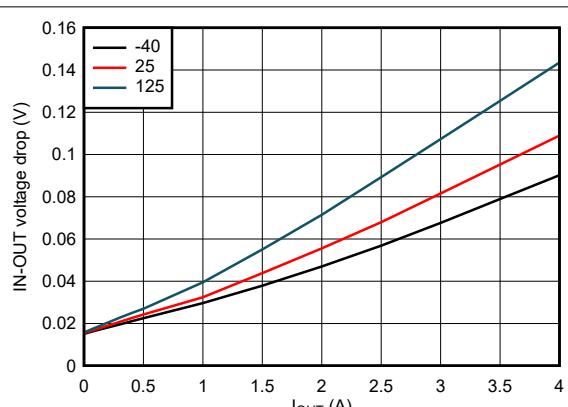



图 7-3. Forward Voltage Drop vs Load Current

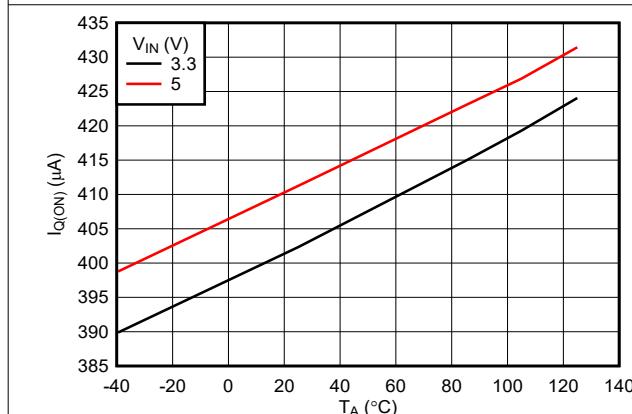



图 7-4. IN Quiescent Current vs Temperature



图 7-5. IN OFF State (UVLO) Current vs Temperature

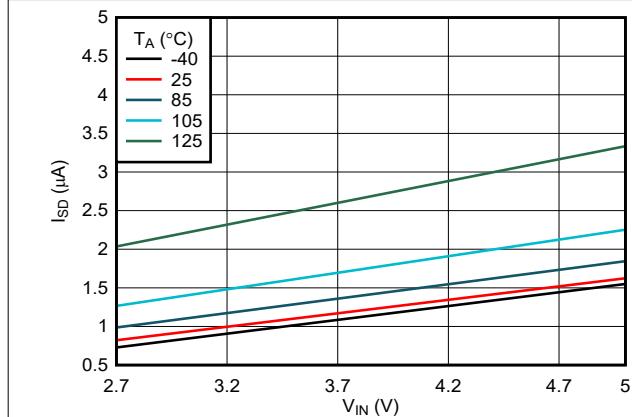



图 7-6. IN Shutdown Current vs Supply Voltage

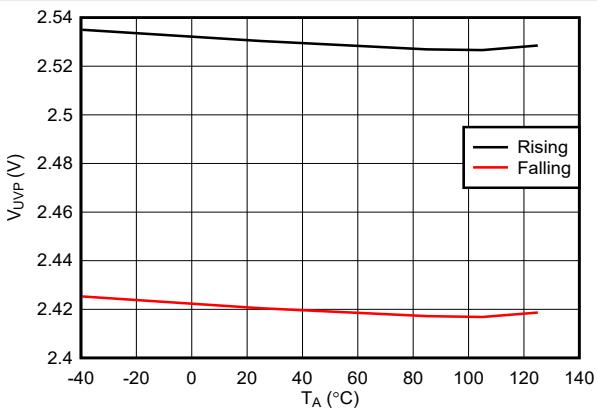



图 7-7. IN Undervoltage Threshold vs Temperature

## 7.8 Typical Characteristics (continued)




图 7-8. EN/UVLO Rising Threshold vs Temperature

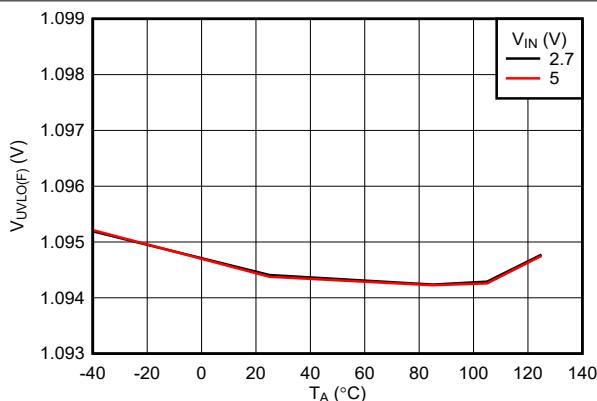



图 7-9. EN/UVLO Falling Threshold vs Temperature

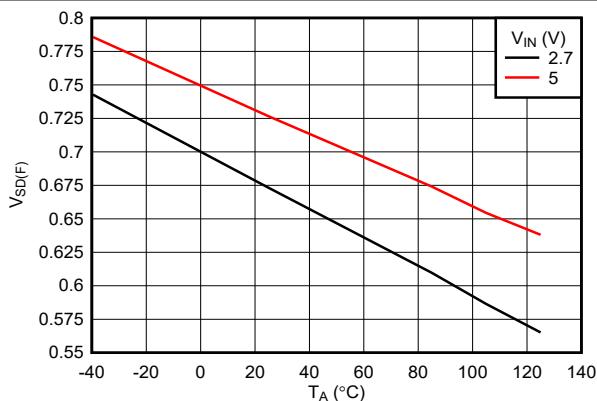



图 7-10. EN/UVLO Shutdown Falling Threshold vs Temperature

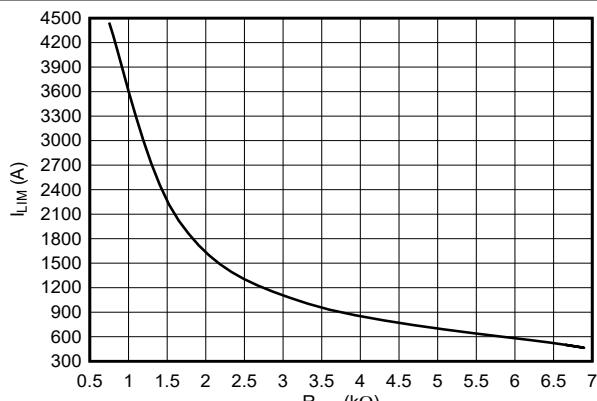



图 7-11. Overcurrent Protection Threshold vs ILM Resistor

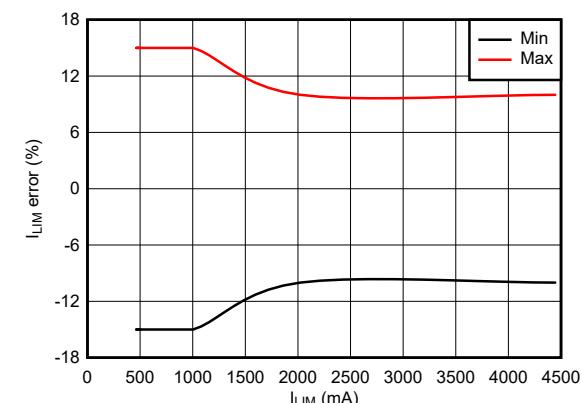



图 7-12. Overcurrent Protection Threshold Accuracy (Across Process, Voltage, and Temperature)



图 7-13. Analog Current Monitor Gain Accuracy

## 7.8 Typical Characteristics (continued)

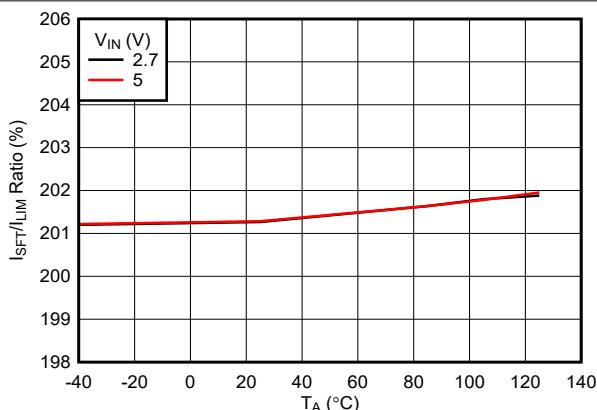



图 7-14. Scalable Fast-Trip Threshold: Current Limit Threshold ( $I_{LIM}$ ) Ratio vs Temperature

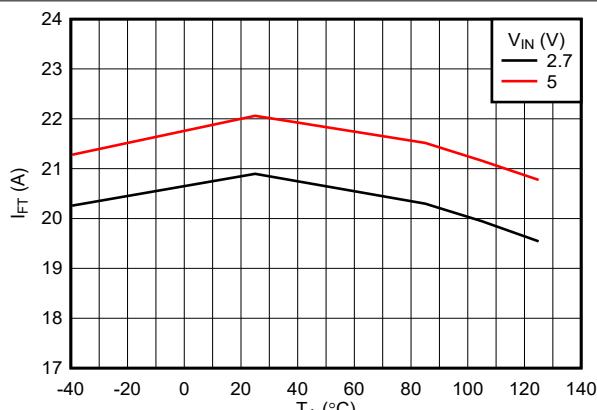



图 7-15. Steady State Fixed Fast-Trip Current Threshold vs Temperature

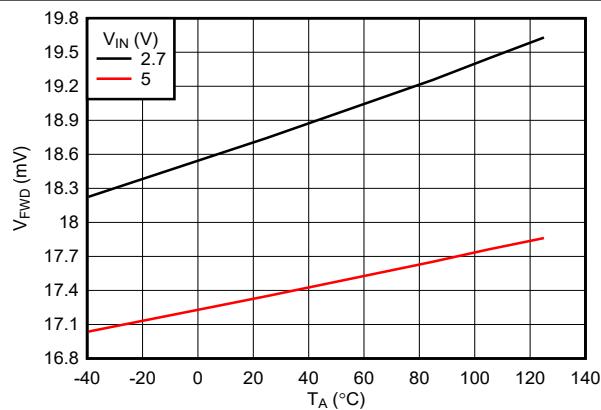



图 7-16. RCB - Forward Regulation Voltage vs Temperature

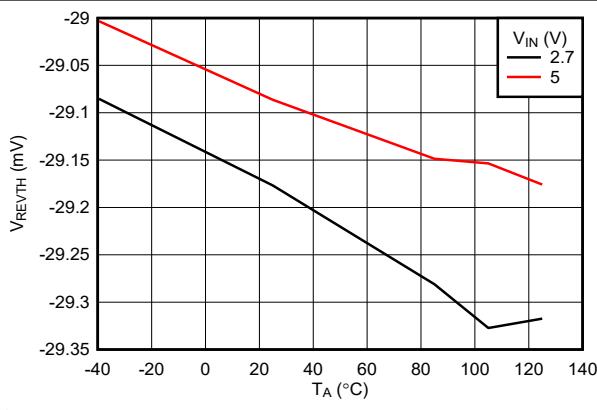



图 7-17. RCB - Reverse Comparator Threshold vs Temperature

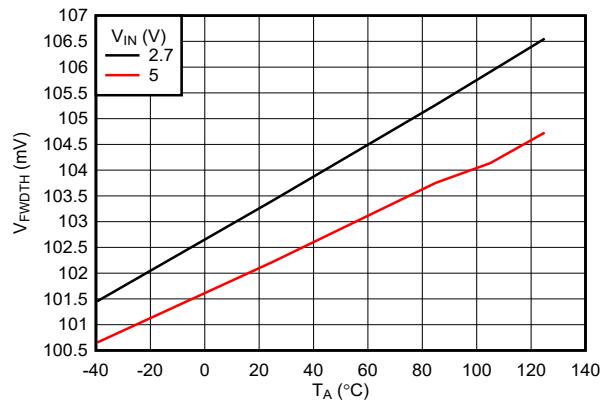



图 7-18. RCB - Forward Comparator Threshold vs Temperature

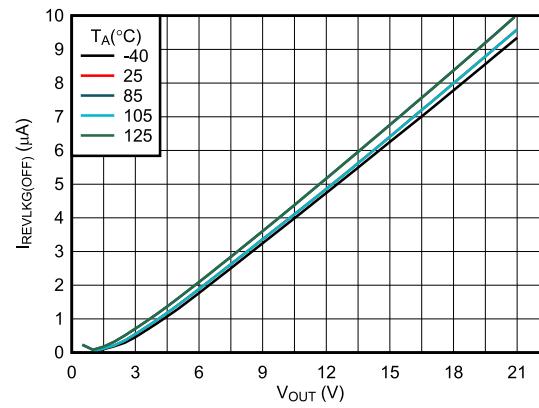



图 7-19. Reverse Leakage Current During OFF State

## 7.8 Typical Characteristics (continued)

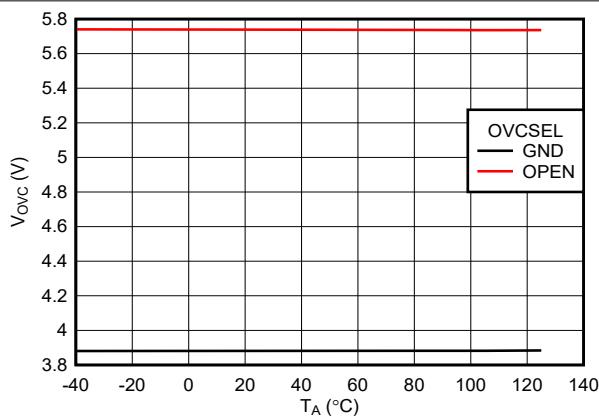



图 7-20. OVC Threshold vs Temperature

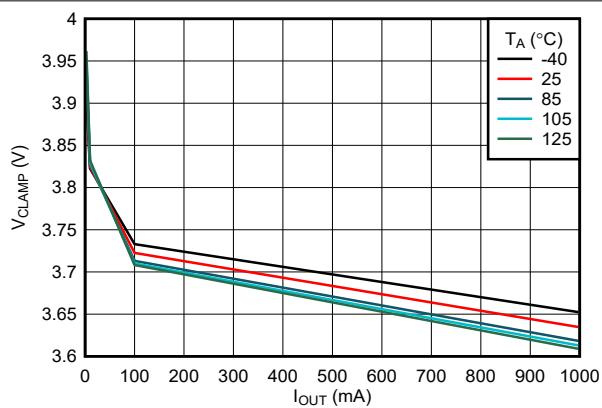



图 7-21. OVC Clamping Voltage (OVCSEL = GND) vs Load Current



图 7-22. OVC Clamping Voltage (OVCSEL = Open) vs Load Current

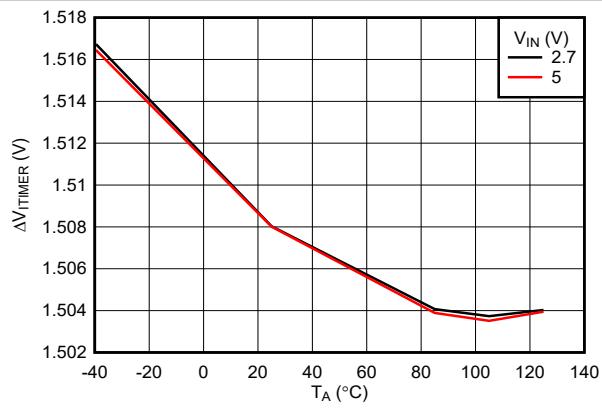



图 7-23. ITIMER Discharge Differential Voltage Threshold vs Temperature

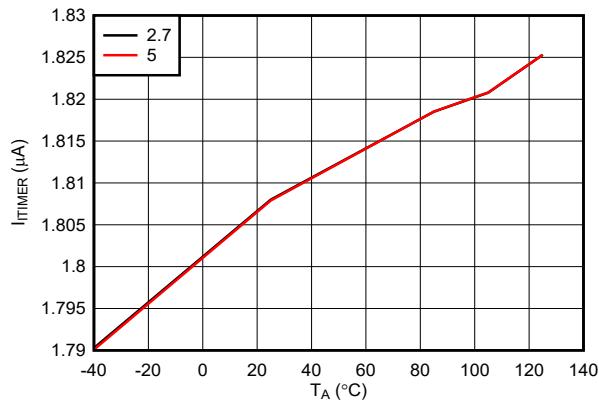



图 7-24. ITIMER Discharge Current vs Temperature

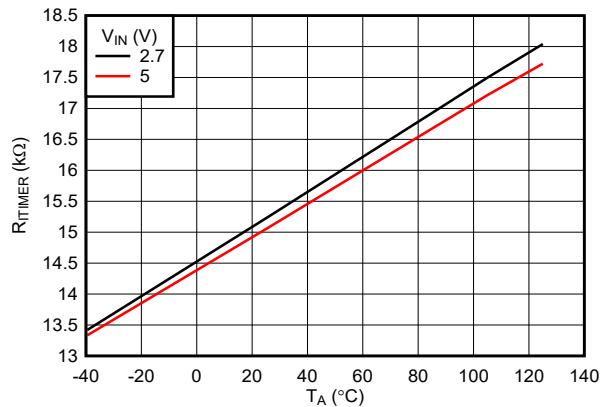



图 7-25. ITIMER Internal Pullup Resistance vs Temperature

## 7.8 Typical Characteristics (continued)

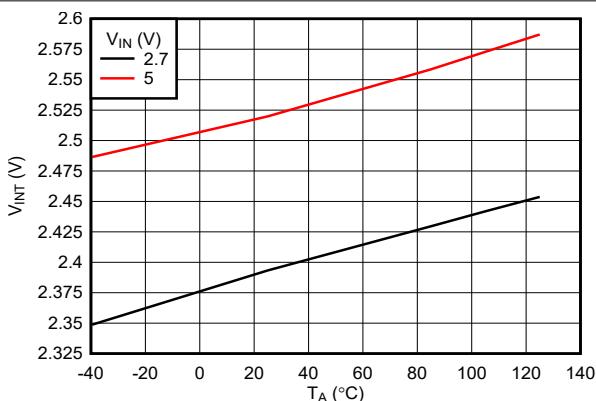



图 7-26. ITIMER Internal Pullup Voltage vs Temperature

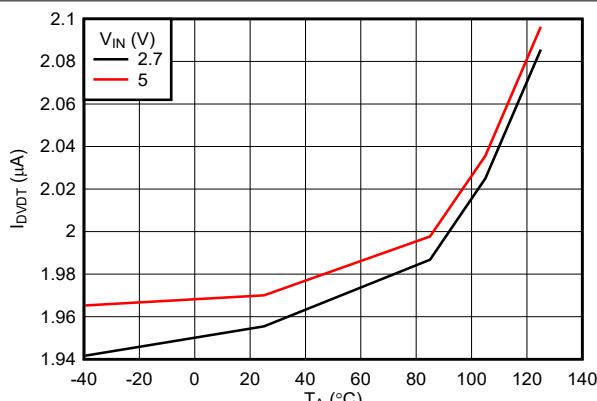



图 7-27. DVDT Charging Current vs Temperature

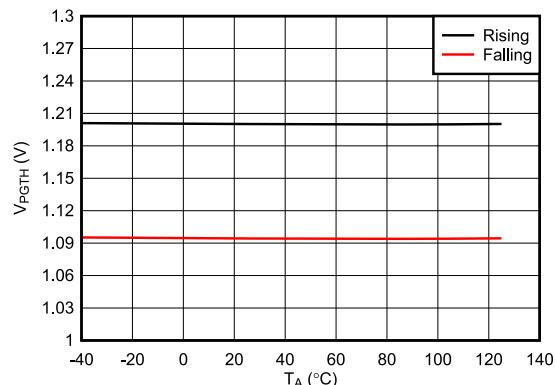



图 7-28. PGTH Threshold vs Temperature

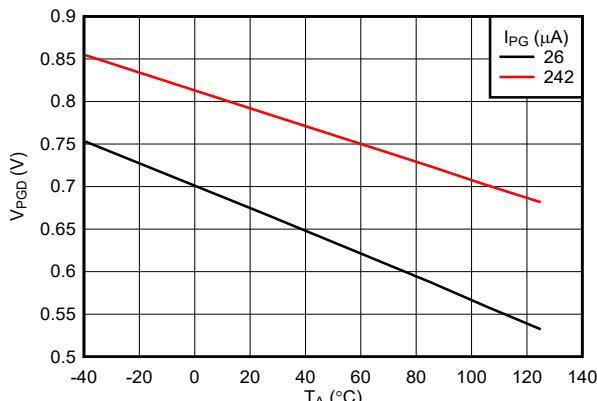



图 7-29. PG Low Voltage Without Input Supply vs Temperature



图 7-30. Time to Thermal Shut-Down During Inrush State

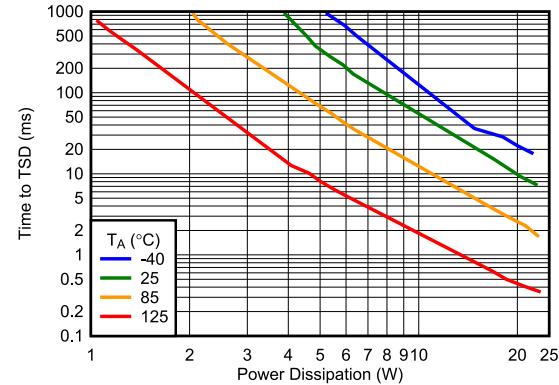



图 7-31. Time to Thermal Shut-Down During Steady State

## 7.8 Typical Characteristics (continued)

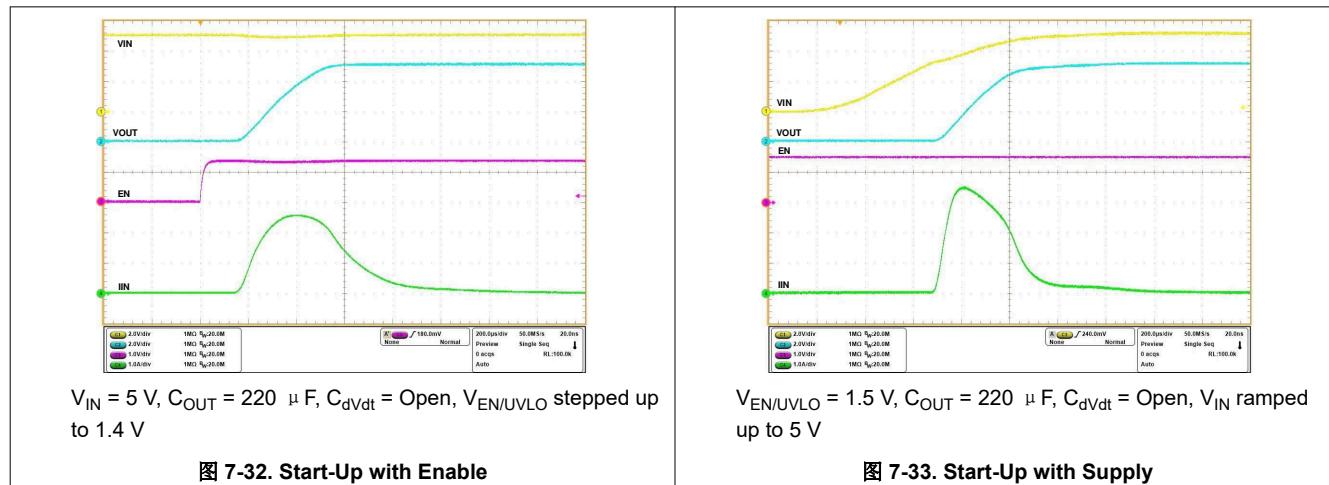
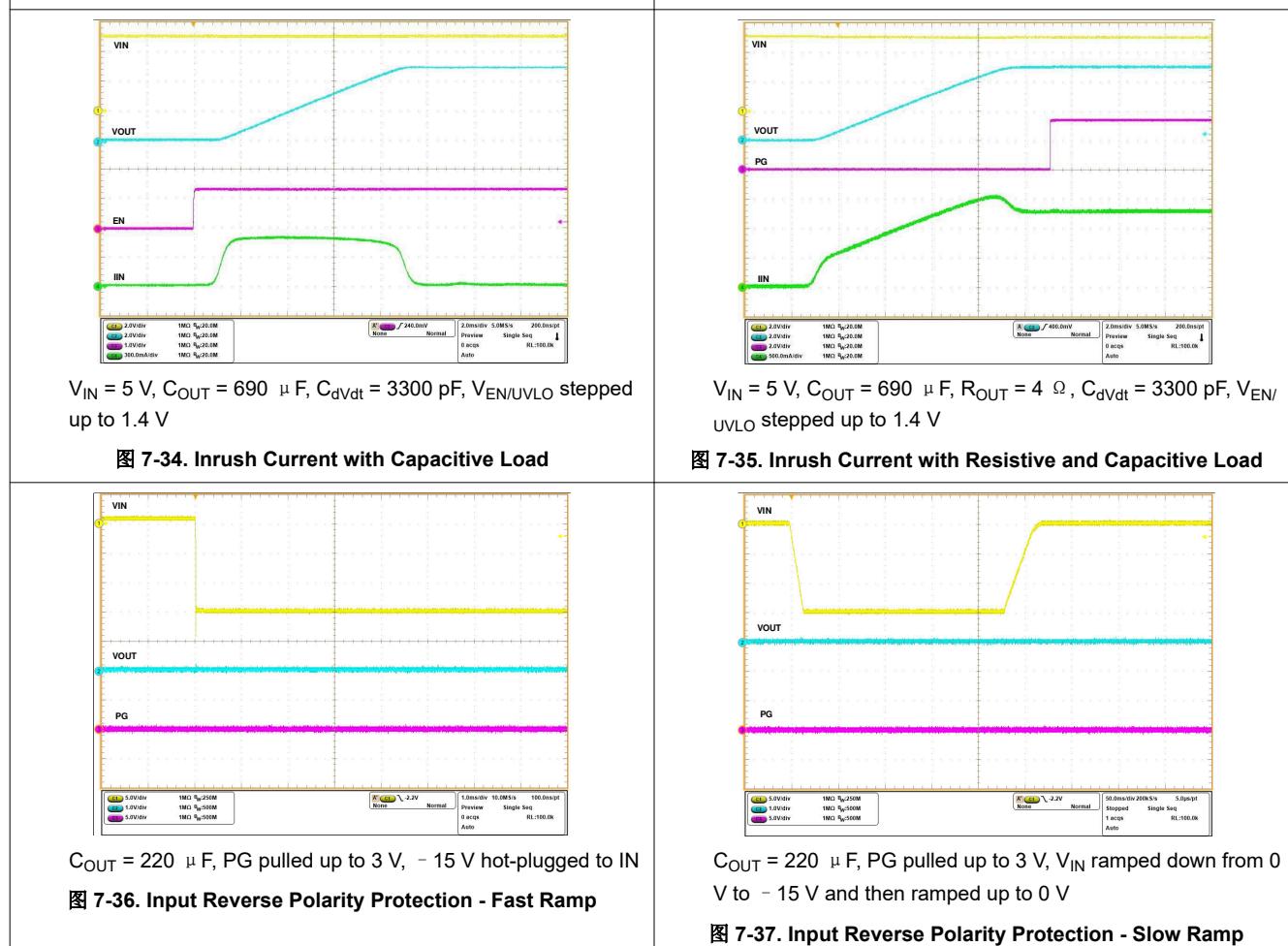




图 7-32. Start-Up with Enable

图 7-33. Start-Up with Supply



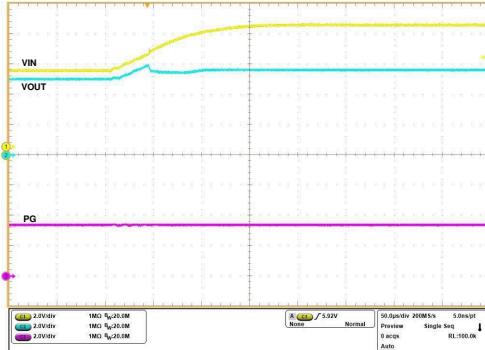

$C_{OUT} = 220 \mu F$ , PG pulled up to 3 V, -15 V hot-plugged to IN

图 7-36. Input Reverse Polarity Protection - Fast Ramp

$C_{OUT} = 220 \mu F$ , PG pulled up to 3 V,  $V_{IN}$  ramped down from 0 V to -15 V and then ramped up to 0 V


图 7-37. Input Reverse Polarity Protection - Slow Ramp

## 7.8 Typical Characteristics (continued)



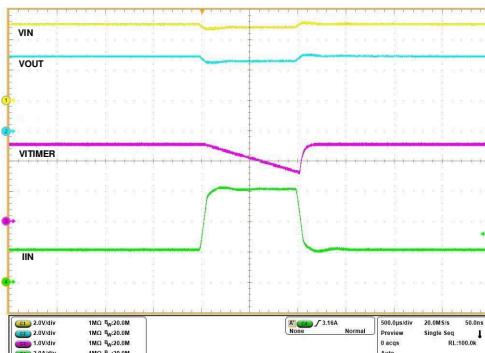

$R_{OVCSel} = GND$ ,  $C_{OUT} = 220 \mu F$ ,  $I_{OUT} = 120 \text{ mA}$ ,  $V_{IN}$  ramped up from 3.3 V to 6 V

图 7-38. Overvoltage Clamp Response



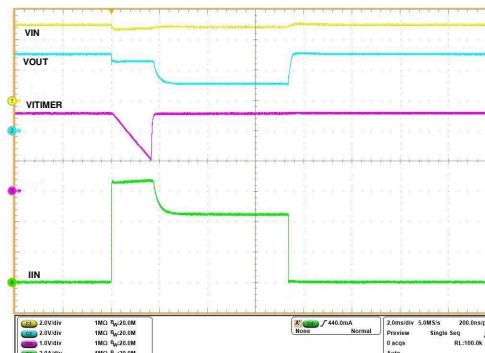

$R_{OVCSel} = Open$ ,  $C_{OUT} = 220 \mu F$ ,  $I_{OUT} = 150 \text{ mA}$ ,  $V_{IN}$  ramped up from 5 V to 8 V

图 7-39. Overvoltage Clamp Response



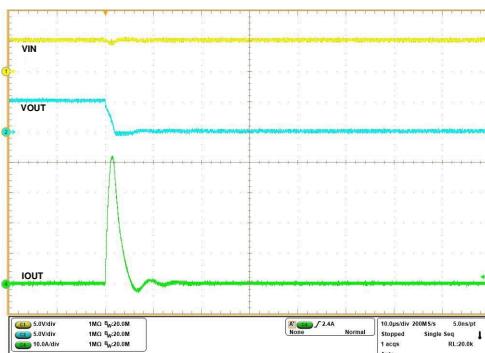

A.  $V_{IN} = 5 \text{ V}$ ,  $C_{ITIMER} = 2.2 \text{ nF}$ ,  $C_{OUT} = 220 \mu F$ ,  $R_{ILM} = 750 \Omega$ ,  $I_{OUT}$  stepped from 2 A  $\rightarrow$  6 A  $\rightarrow$  2 A within 1 ms

图 7-40. Transient Overcurrent Blanking Timer Response



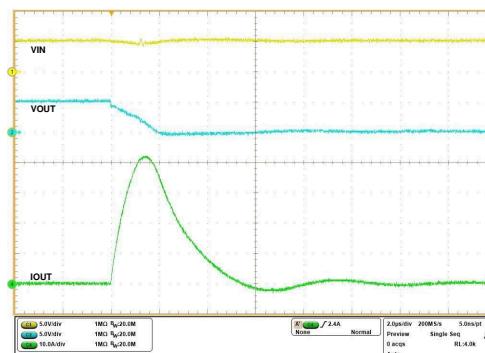
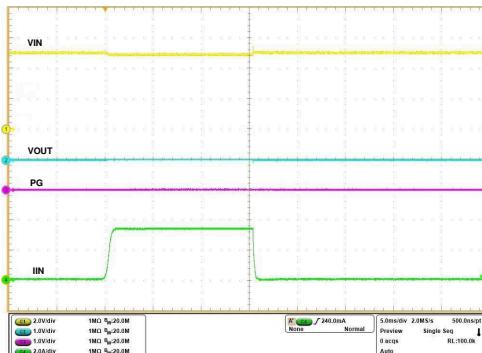

$V_{IN} = 5 \text{ V}$ ,  $C_{ITIMER} = 2.2 \text{ nF}$ ,  $C_{OUT} = 220 \mu F$ ,  $R_{ILM} = 750 \Omega$ ,  $I_{OUT}$  stepped from 0 A  $\rightarrow$  6.7 A

图 7-41. Active Current Limit Response



$V_{IN} = 5 \text{ V}$ ,  $R_{ILM} = 750 \Omega$ ,  $V_{EN/UVLO} = 1.4 \text{ V}$ , OUT stepped from Open  $\rightarrow$  Short-circuit to GND


图 7-42. Output Short-Circuit During Steady State



$V_{IN} = 5 \text{ V}$ ,  $R_{ILM} = 750 \Omega$ ,  $V_{EN/UVLO} = 1.4 \text{ V}$ , OUT stepped from Open  $\rightarrow$  Short-circuit to GND

图 7-43. Output Short-Circuit During Steady State (Zoomed In)

## 7.8 Typical Characteristics (continued)

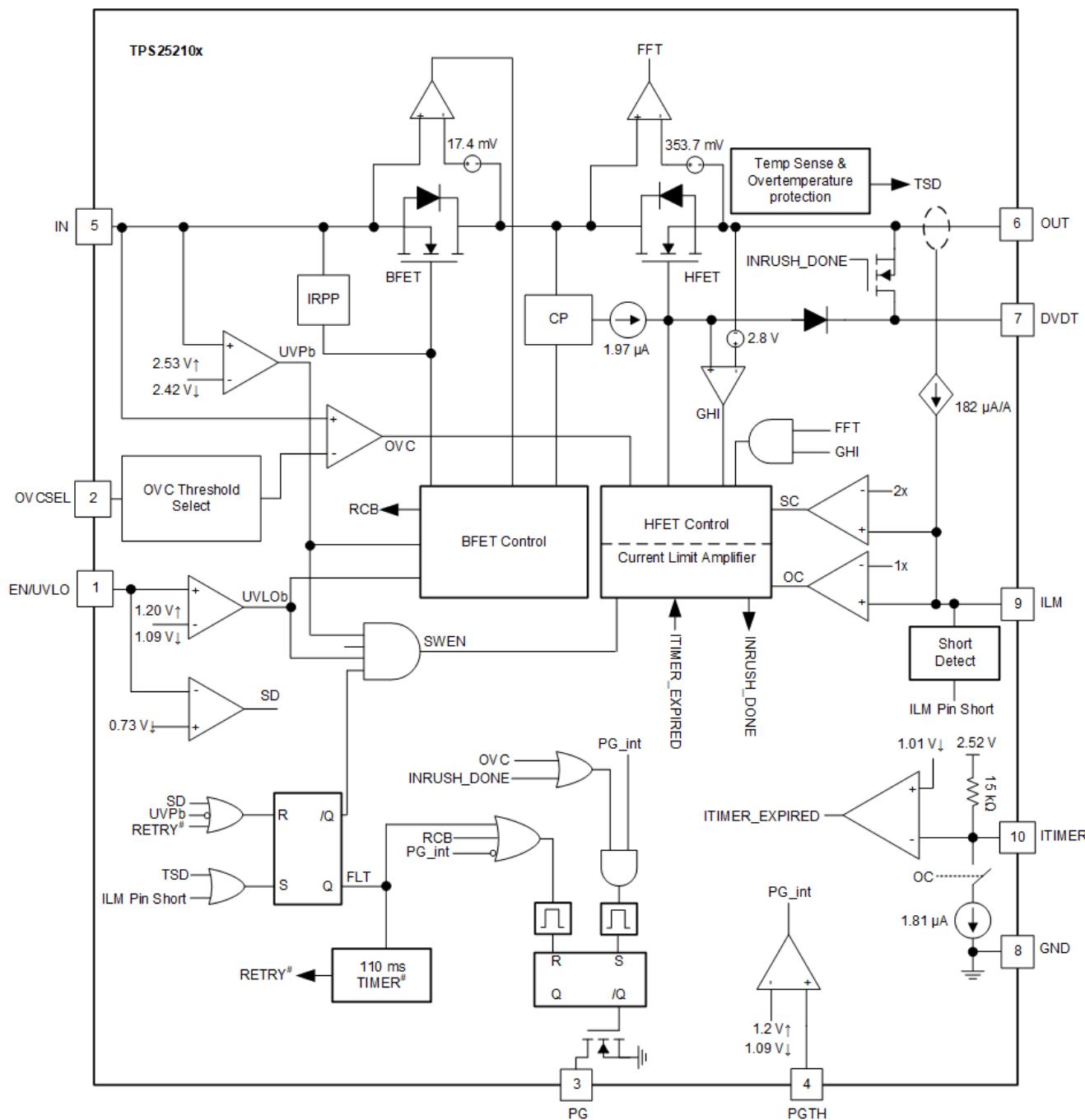


$V_{IN} = 5$  V,  $C_{OUT}$  = Open, OUT short-circuit to GND,  $R_{ILM} = 750 \Omega$ ,  $V_{EN/UVLO}$  stepped from 0 V to 1.4 V

图 7-44. Power Up into Short-Circuit

## 8 Detailed Description

### 8.1 Overview


The TPS2521xx is an eFuse with integrated power path that is used to ensure safe power delivery in a system. The device starts its operation by monitoring the IN bus. When the input supply voltage ( $V_{IN}$ ) exceeds the Undervoltage Protection threshold ( $V_{UVP}$ ), the device samples the EN/UVLO pin. A high level ( $> V_{UVLO}$ ) on this pin enables the internal power path (BFET + HFET) to start conducting and allow current to flow from IN to OUT. When EN/UVLO is held low ( $< V_{UVLO}$ ), the internal power path is turned off. In case of reverse voltages appearing at the input, the power path remains OFF thereby protecting the output load.

After a successful start-up sequence, the device now actively monitors its load current and input voltage, and controls the internal HFET to ensure that the user adjustable overcurrent limit threshold ( $I_{LIM}$ ) is not exceeded and overvoltage spikes are either safely clamped to the selected threshold voltage ( $V_{OVC}$ ). The device also provides fast protection against severe overcurrent during short-circuit events. This keeps the system safe from harmful levels of voltage and current. At the same time, a user adjustable overcurrent blanking timer allows the system to pass moderate transient peaks in the load current profile without tripping the eFuse. This ensures a robust protection solution against real faults which is also immune to transients, thereby ensuring maximum system uptime.

The device has integrated reverse current blocking FET (BFET) which operates like an ideal diode. The BFET is linearly regulated to maintain a small constant forward drop ( $V_{FWD}$ ) in forward conduction mode and turned off completely to block reverse current if output voltage exceeds the input voltage.

The device also has a built-in thermal sensor based shutdown mechanism to protect itself in case the device temperature ( $T_J$ ) exceeds the recommended operating conditions.

## 8.2 Functional Block Diagram



# Not applicable to Latch-off variant (TPS25210L)

## 8.3 Feature Description

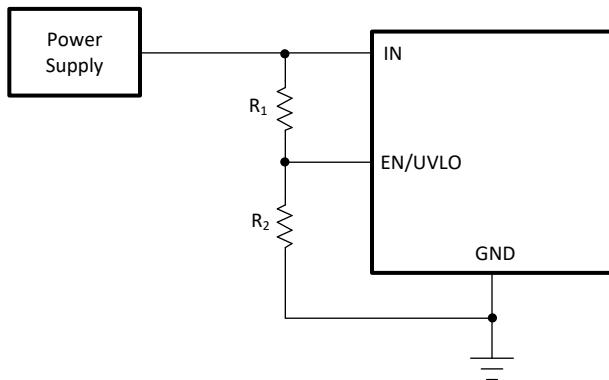
The TPS2521xx eFuse is a compact, feature rich power management device that provides detection, protection and indication in the event of system faults.

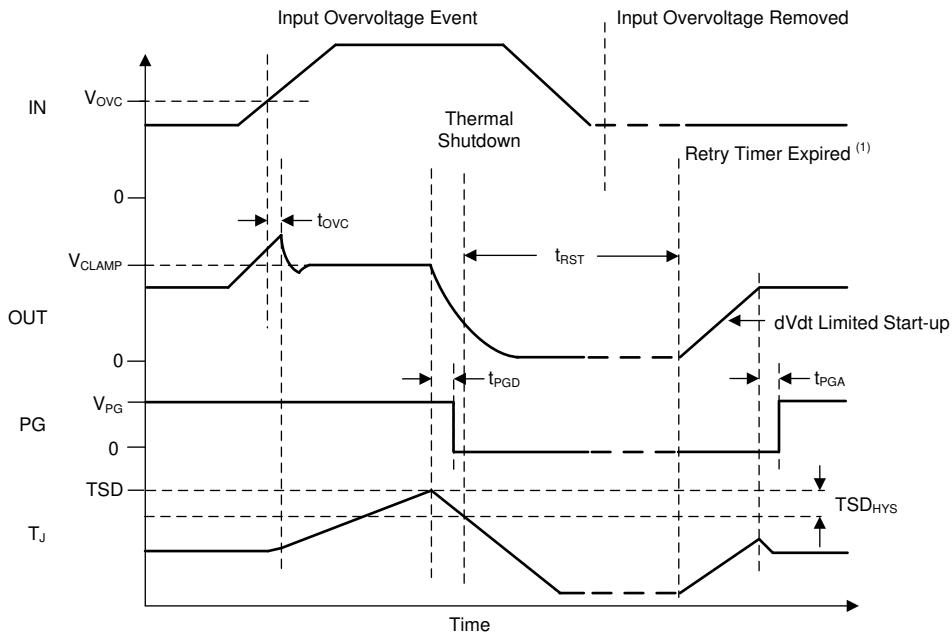
### 8.3.1 Input Reverse Polarity Protection

The TPS2521xx device is internally protected against steady state negative voltages applied at the input supply pin. The device blocks the negative voltage from appearing at the output, thereby protecting the load circuits. There's no reverse current flowing from output to the input in this condition. The lowest negative voltage the device can handle at the input is limited to  $-15\text{ V}$  or  $\text{VOUT} - 21\text{ V}$ , whichever is higher. TI also recommends that all signal pins (for example, EN/UVLO, PGTH) which are connected to input supply should have a sufficiently large pullup resistor to limit the current flowing out of these pins during reverse polarity conditions.

### 8.3.2 Undervoltage Lockout (UVLO and UVP)

The TPS2521x implements Undervoltage Protection on IN in case the applied voltage becomes too low for the system or device to properly operate. The Undervoltage Protection has a default lockout threshold of  $\text{V}_{\text{UVP}}$  which is fixed internally. Also, the UVLO comparator on the EN/UVLO pin allows the Undervoltage Protection threshold to be externally adjusted to a user defined value. The [图 8-1](#) and [方程式 1](#) show how a resistor divider can be used to set the UVLO set point for a given voltage supply.





图 8-1. Adjustable Undervoltage Protection

$$V_{\text{IN}(\text{UV})} = \frac{V_{\text{UVLO}(\text{R})} \times (R_1 + R_2)}{R_2} \quad (1)$$

### 8.3.3 Overvoltage Clamp (OVC)

The TPS2521xx implements a voltage clamp on the output to protect the system in the event of input overvoltage. When the device detects the input has exceeded the Overvoltage Clamp Threshold ( $V_{\text{OVC}}$ ), it quickly responds within  $t_{\text{OVC}}$  and stops the output from rising further and then regulates the HFET linearly to clamp the output voltage below  $V_{\text{CLAMP}}$  as long as an overvoltage condition is present on the input.

If the part stays in clamping state for an extended period of time, there is higher power dissipation inside the part which can eventually lead to thermal shut-down (TSD). After the part shuts down due to TSD fault, it either stays latched off (TPS2521xL variant) or restarts automatically after a fixed delay (TPS2521xA variant). See [Overtemperature Protection \(OTP\)](#) for more details on device response to overtemperature.



<sup>(1)</sup> Applicable only for TPS25210A (Auto-retry variant)

**图 8-2. TPS2521xA Overvoltage Response (Auto-Retry)**

There are two available overvoltage clamp threshold options which can be configured using the OVCSEL pin.

**表 8-1. TPS2521xx Overvoltage Clamp Threshold Selection**

| OVCSEL Pin Connection | Overvoltage Clamp Threshold |
|-----------------------|-----------------------------|
| Shorted to GND        | 3.8 V                       |
| Open                  | 5.7 V                       |

### 8.3.4 Inrush Current, Overcurrent, and Short Circuit Protection

TPS2521xx incorporates four levels of protection against overcurrent:

1. Adjustable slew rate (dVdt) for inrush current control
2. Adjustable threshold ( $I_{LIM}$ ) for overcurrent protection during start-up or steady-state
3. Adjustable threshold ( $I_{SC}$ ) for fast-trip response to severe overcurrent during start-up or steady-state
4. Fixed threshold ( $I_{FT}$ ) for fast-trip response to quickly protect against hard output short-circuits during steady-state

#### 8.3.4.1 Slew Rate (dVdt) and Inrush Current Control

During hot-plug events or while trying to charge a large output capacitance at start-up, there can be a large inrush current. If the inrush current is not managed properly, it can damage the input connectors and/or cause the system power supply to droop leading to unexpected restarts elsewhere in the system. The inrush current during turn on is directly proportional to the load capacitance and rising slew rate. [方程式 2](#) can be used to find the slew rate (SR) required to limit the inrush current ( $I_{INRUSH}$ ) for a given load capacitance ( $C_{OUT}$ ):

$$SR (V/ms) = \frac{I_{INRUSH} (mA)}{C_{OUT} (\mu F)} \quad (2)$$

A capacitor can be connected to the dVdt pin to control the rising slew rate and lower the inrush current during turn on. The required  $C_{dVdt}$  capacitance to produce a given slew rate can be calculated using [方程式 3](#).

$$C_{dVdt} (pF) = \frac{2000}{SR (V/ms)} \quad (3)$$

The fastest output slew rate is achieved by leaving the dVdt pin open.

---

#### 备注

For  $C_{dVdt} > 10 \text{ nF}$ , TI recommends to add a  $100\text{-}\Omega$  resistor in series with the capacitor on the dVdt pin.

---

#### 8.3.4.2 Active Current Limiting

The TPS2521xx responds to output overcurrent conditions by actively limiting the current after a user adjustable transient fault blanking interval. When the load current exceeds the set overcurrent threshold ( $I_{LIM}$ ) set by the ILM pin resistor ( $R_{ILM}$ ), but stays lower than the short-circuit threshold ( $2 \times I_{LIM}$ ), the device starts discharging the ITIMER pin capacitor using an internal  $1.8\text{-}\mu\text{A}$  pulldown current. If the load current drops below the overcurrent threshold before the ITIMER capacitor ( $C_{ITIMER}$ ) discharges by  $\Delta V_{ITIMER}$ , the ITIMER is reset by pulling it up to  $V_{INT}$  internally and the current limit action is not engaged. This allows short load transient pulses to pass through the device without getting current limited. If the overcurrent condition persists, the  $C_{ITIMER}$  continues to discharge and after it discharges by  $\Delta V_{ITIMER}$ , the current limit starts regulating the HFET to actively limit the current to the set overcurrent threshold ( $I_{LIM}$ ). At the same time, the  $C_{ITIMER}$  is charged up to  $V_{INT}$  again so that it is at its default state before the next overcurrent event. This ensures the full blanking timer interval is provided for every overcurrent event. [方程式 4](#) can be used to calculate the  $R_{ILM}$  value for a desired overcurrent threshold.

$$R_{ILM} (\Omega) = \frac{3334}{I_{LIM} (\text{A})} \quad (4)$$

---

#### 备注

1. Leaving the ILM pin open sets the current limit to nearly zero and results in the part entering current limit with the slightest amount of loading at the output.
2. The current limit circuit employs a foldback mechanism. The current limit threshold in the foldback region ( $0 \text{ V} < V_{OUT} < V_{FB}$ ) is lower than the steady state current limit threshold ( $I_{LIM}$ ).
3. Shorting the ILM pin to ground at any point during normal operation is detected as a fault and the part shuts down. There is a minimum current ( $I_{FLT}$ ) which the part allows in this condition before the pin short condition is detected.

---

The duration for which transients are allowed can be adjusted using an appropriate capacitor value from ITIMER pin to ground. The  $C_{ITIMER}$  value needed to set the desired transient overcurrent blanking interval can be calculated using [方程式 5](#) below.

$$t_{ITIMER} (\text{ms}) = \frac{\Delta V_{ITIMER} (\text{V}) \times C_{ITIMER} (\text{nF})}{I_{ITIMER} (\mu\text{A})} \quad (5)$$

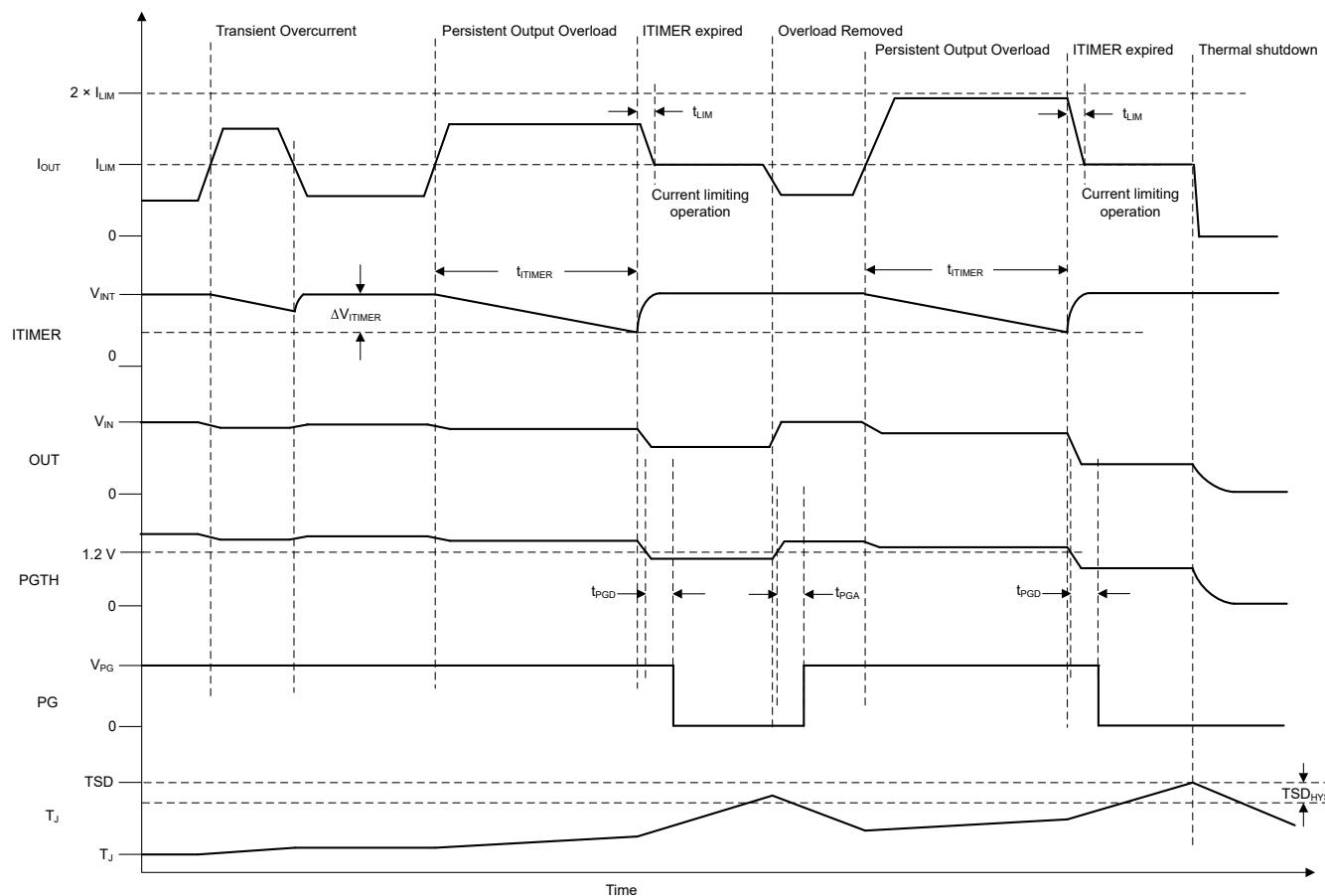
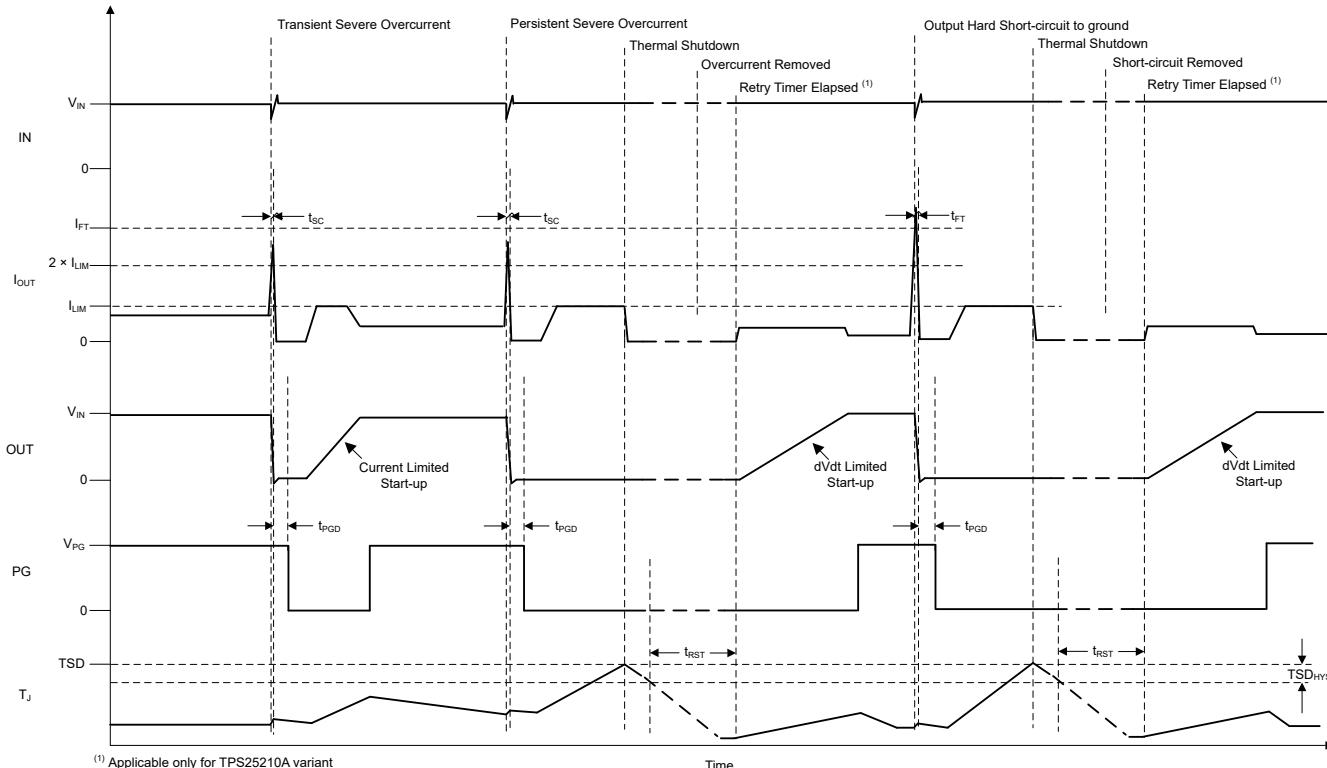



图 8-3. TPS2521xx Active Current Limit Response

#### 备注


1. Leave the ITIMER pin open to allow the part to limit the current with the minimum possible delay.
2. Shorting the ITIMER pin to ground results in minimum overcurrent response delay (similar to ITIMER pin open condition), but increases the device current consumption. This is not a recommended mode of operation.
3. Active current limiting based on  $R_{ILM}$  is active during start-up. In case the start-up current exceeds  $I_{LIM}$ , the device regulates the current to the set limit. However, during start-up the current limit is engaged without waiting for the ITIMER delay.
4. During overvoltage clamp condition, if an overcurrent event occurs, the current limit is engaged without waiting for the ITIMER delay.
5. Increasing the  $C_{ITIMER}$  value extends the overcurrent blanking interval, but it also extends the time needed for the  $C_{ITIMER}$  to recharge up to  $V_{INT}$ . If the next overcurrent event occurs before the  $C_{ITIMER}$  is recharged fully, it takes lesser time to discharge to the ITIMER expiry threshold, thereby providing a shorter blanking interval than intended.

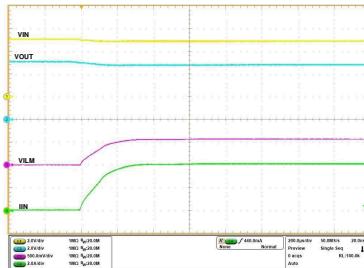
During active current limit, the output voltage drops resulting in increased device power dissipation across the HFET. If the device internal temperature ( $T_J$ ) exceeds the thermal shutdown threshold (TSD), the HFET is turned off. After the part shuts down due to TSD fault, it either stays latched off (TPS2521xL variant) or restarts automatically after a fixed delay (TPS2521xA variant). See [Overtemperature Protection \(OTP\)](#) for more details on device response to overtemperature.

#### 8.3.4.3 Short-Circuit Protection

During an output short-circuit event, the current through the device increases very rapidly. When a severe overcurrent condition is detected, the device triggers a fast-trip response to limit the current to a safe level. The

internal fast-trip comparator employs a scalable threshold ( $I_{SC}$ ) which is equal to  $2 \times I_{LIM}$ . This enables the user to adjust the fast-trip threshold rather than using a fixed threshold which can be too high for some low current systems. The device also employs a fixed fast-trip threshold ( $I_{FT}$ ) to protect fast protection against hard short-circuits during steady state. The fixed fast-trip threshold is higher than the maximum recommended user adjustable scalable fast-trip threshold. After the current exceeds  $I_{SC}$  or  $I_{FT}$ , the HFET is turned off completely within  $t_{FT}$ . Thereafter, the device tries to turn the HFET back ON after a short de-glitch interval (30  $\mu$ s) in a current limited manner instead of a  $dVdt$  limited manner. This ensures that the HFET has a faster recovery after a transient overcurrent event and minimizes the output voltage droop. However, if the fault is persistent, the device stays in current limit causing the junction temperature to rise and eventually enter thermal shutdown. See [Overtemperature Protection \(OTP\)](#) section for details on the device response to overtemperature.




**图 8-4. TPS2521xx Short-Circuit Response**

### 8.3.5 Analog Load Current Monitor

The device allows the system to accurately monitor the output load current by providing an analog current sense output on the ILM pin which is proportional to the current through the FET. The user can sense the voltage ( $V_{ILM}$ ) across the  $R_{ILM}$  to get a measure of the output load current.

$$I_{OUT} (A) = \frac{V_{ILM} (\mu V)}{R_{ILM} (\Omega) \times G_{MON} (\mu A/A)} \quad (6)$$

The waveform below shows the ILM signal response to a load step at the output.



$V_{IN} = 5 \text{ V}$ ,  $C_{OUT} = 220 \mu\text{F}$ ,  $R_{ILM} = 750 \Omega$ ,  $I_{OUT}$  stepped up from 0 A to 4 A

图 8-5. Analog Load Current Monitor Response

备注

The ILM pin is sensitive to capacitive loading. Careful design and layout is needed to ensure the parasitic capacitive loading on the ILM pin is  $< 50 \text{ pF}$  for stable operation.

### 8.3.6 Reverse Current Protection

The device functions like an ideal diode and blocks reverse current flow from OUT to IN under all conditions. The device has integrated back-to-back MOSFETs connected in a common drain configuration. The voltage drop between the IN and OUT pins is constantly monitored and the gate drive of the blocking FET (BFET) is adjusted as needed to regulate the forward voltage drop at  $V_{FWD}$ . This closed loop regulation scheme (linear ORing control) enables graceful turn off of the MOSFET during a reverse current event and ensures there is no DC reverse current flow.

The device also uses a conventional comparator ( $V_{REVTH}$ ) based reverse blocking mechanism to provide fast response ( $t_{RCB}$ ) to transient reverse currents. After the device enters reverse current blocking condition, it waits for the  $(V_{IN} - V_{OUT})$  forward drop to exceed the  $V_{FWTH}$  before it performs a fast recovery to reach full forward conduction state. This provides sufficient hysteresis to prevent supply noise or ripple from affecting the reverse current blocking response. The recovery from reverse current blocking is very fast ( $t_{SWRCB}$ ). This ensures minimum supply droop which is helpful in applications such as supply MUXing/ORing and USB Fast Role Swap (FRS).

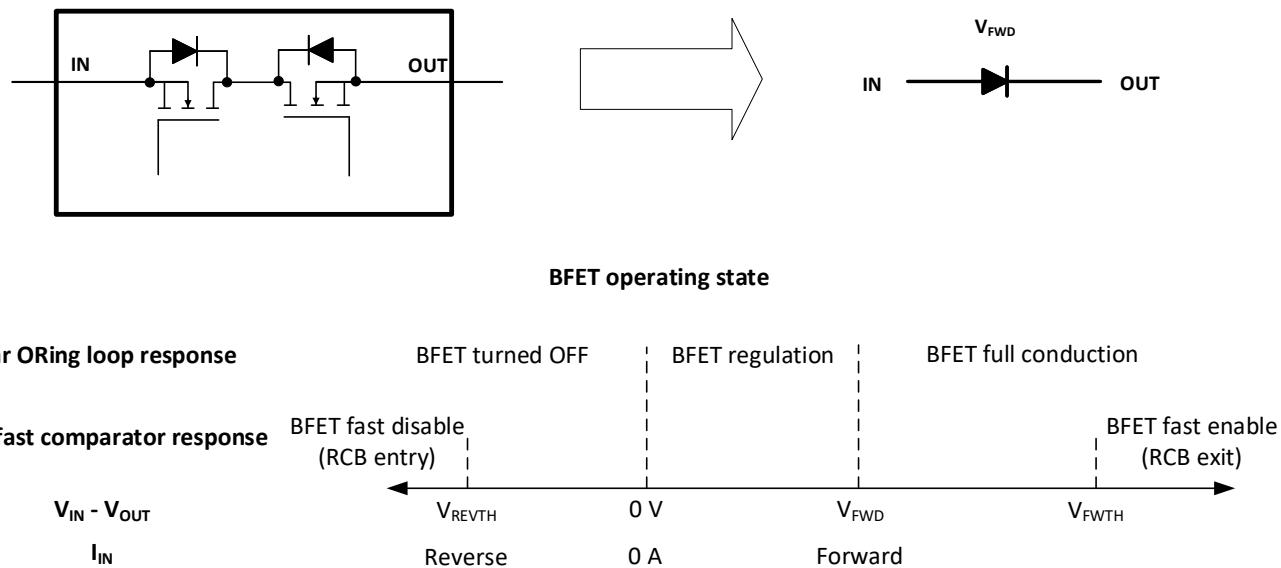
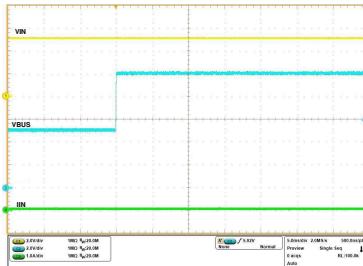
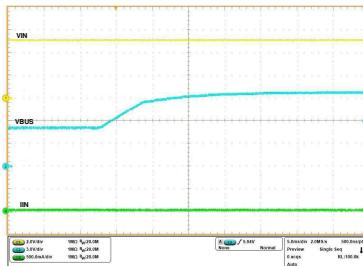



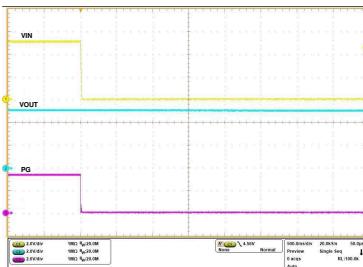

图 8-6. Reverse Current Blocking Response


The waveforms below illustrate the reverse current blocking performance in various scenarios.

During fast voltage step at output (for example, hot-plug), the fast comparator based reverse blocking mechanism ensures minimum jump/glitch on the input rail.



**图 8-7. Reverse Current Blocking Performance During Fast Voltage Step at Output**


During slow voltage ramp at output, the linear ORing based reverse blocking mechanism ensures there is no DC current flow from OUT to IN, thereby avoiding input rail from getting slowly charged up to output voltage.



**图 8-8. Reverse Current Blocking Performance During Slow Voltage Ramp at Output**

When the input supply droops or gets disconnected while the output storage element (capacitor bank or super capacitor) is charged to the full voltage, the linear ORing scheme minimizes the self-discharge from OUT to IN. This ensures maximum hold-up time for the output storage element in critical power back-up applications.

It also prevents incorrect supply presence indication in applications which sense the input voltage to detect if the supply is connected.



**图 8-9. Reverse Current Blocking Performance During Input Supply Failure**

### 8.3.7 Overtemperature Protection (OTP)

The device monitors the internal die temperature ( $T_J$ ) at all times and shuts down the part as soon as the temperature exceeds a safe operating level (TSD) thereby protecting the device from damage. The device does not turn back on until the junction cools down sufficiently, that is the die temperature falls below ( $TSD - TSD_{HYS}$ ).

When the TPS2521xL (latch-off variant) detects thermal overload, it shuts down and remains latched-off until the device is power cycled or re-enabled. When the TPS2521xA (auto-retry variant) detects thermal overload, it remains off until it has cooled down by  $TSD_{HYS}$ . Thereafter, the device remains off for an additional delay of  $t_{RST}$  after which it automatically retries to turn on if it is still enabled.

**表 8-2. Thermal Shutdown**

| Device                 | Enter TSD      | Exit TSD                                                                                                                                         |
|------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| TPS2521xL (Latch-Off)  | $T_J \geq TSD$ | $T_J < TSD - TSD_{HYS}$<br>$V_{IN}$ cycled to 0 V and then above $V_{UVP(R)}$ OR<br>EN/UVLO toggled below $V_{SD(F)}$                            |
| TPS2521xA (Auto-Retry) | $T_J \geq TSD$ | $T_J < TSD - TSD_{HYS}$<br>$V_{IN}$ cycled to 0 V and then above $V_{UVP(R)}$ OR<br>EN/UVLO toggled below $V_{SD(F)}$ OR $t_{RST}$ timer expired |

### 8.3.8 Fault Response

The following table summarizes the device response to various fault conditions.

**表 8-3. Fault Summary**

| Event                                                            | Protection Response                 | Fault Latched Internally |
|------------------------------------------------------------------|-------------------------------------|--------------------------|
| Overtemperature                                                  | Shutdown                            | Y                        |
| Undervoltage (UVP or UVLO)                                       | Shutdown                            | N                        |
| Input Reverse Polarity                                           | Shutdown                            | N                        |
| Input Overvoltage                                                | Voltage Clamp                       | N                        |
| Transient Overcurrent ( $I_{LIM} < I_{OUT} < 2 \times I_{LIM}$ ) | None                                | N                        |
| Persistent Overcurrent                                           | Current Limit                       | N                        |
| Output Short-Circuit to GND                                      | Fast-trip followed by Current Limit | N                        |
| ILM Pin Open<br>(During Steady State)                            | Shutdown                            | N                        |
| ILM Pin Shorted to GND                                           | Shutdown                            | Y                        |
| Reverse Current ( $(V_{OUT} - V_{IN}) > V_{REVTH}$ )             | Reverse Current Blocking            | N                        |

Faults which are latched internally can be cleared either by power cycling the part (pulling  $V_{IN}$  to 0 V) or by pulling the EN/UVLO pin voltage below  $V_{SD}$ . This also resets the  $t_{RST}$  timer for the TPS2521xA (auto-retry) variants.

During a latched fault, pulling the EN/UVLO just below the UVLO threshold has no impact on the device. This is true for both TPS2521xL (latch-off) and TPS2521xA (auto-retry) variants.

For TPS2521xA (auto-retry) variant, on expiry of the  $t_{RST}$  timer after a fault, the device restarts automatically.

### 8.3.9 Power Good Indication (PG)

The TPS2521xx provides an active high digital output (PG) which serves as a power good indication signal and is asserted high depending on the voltage at the PGTH pin along with the device state information. The PG is an open-drain pin and needs to be pulled up to an external supply.

After power up, PG is pulled low initially. The device initiates a inrush sequence in which the HFET is turned on in a controlled manner. When the HFET gate voltage reaches the full overdrive indicating that the inrush sequence is complete and the voltage at PGTH is above  $V_{PGTH(R)}$ , the PG is asserted after a de-glitch time ( $t_{PGA}$ ).

PG is de-asserted if at any time during normal operation, the voltage at PGTH falls below  $V_{PGTH(F)}$ , or the device detects a fault (except overcurrent). The PG de-assertion de-glitch time is  $t_{PGD}$ .

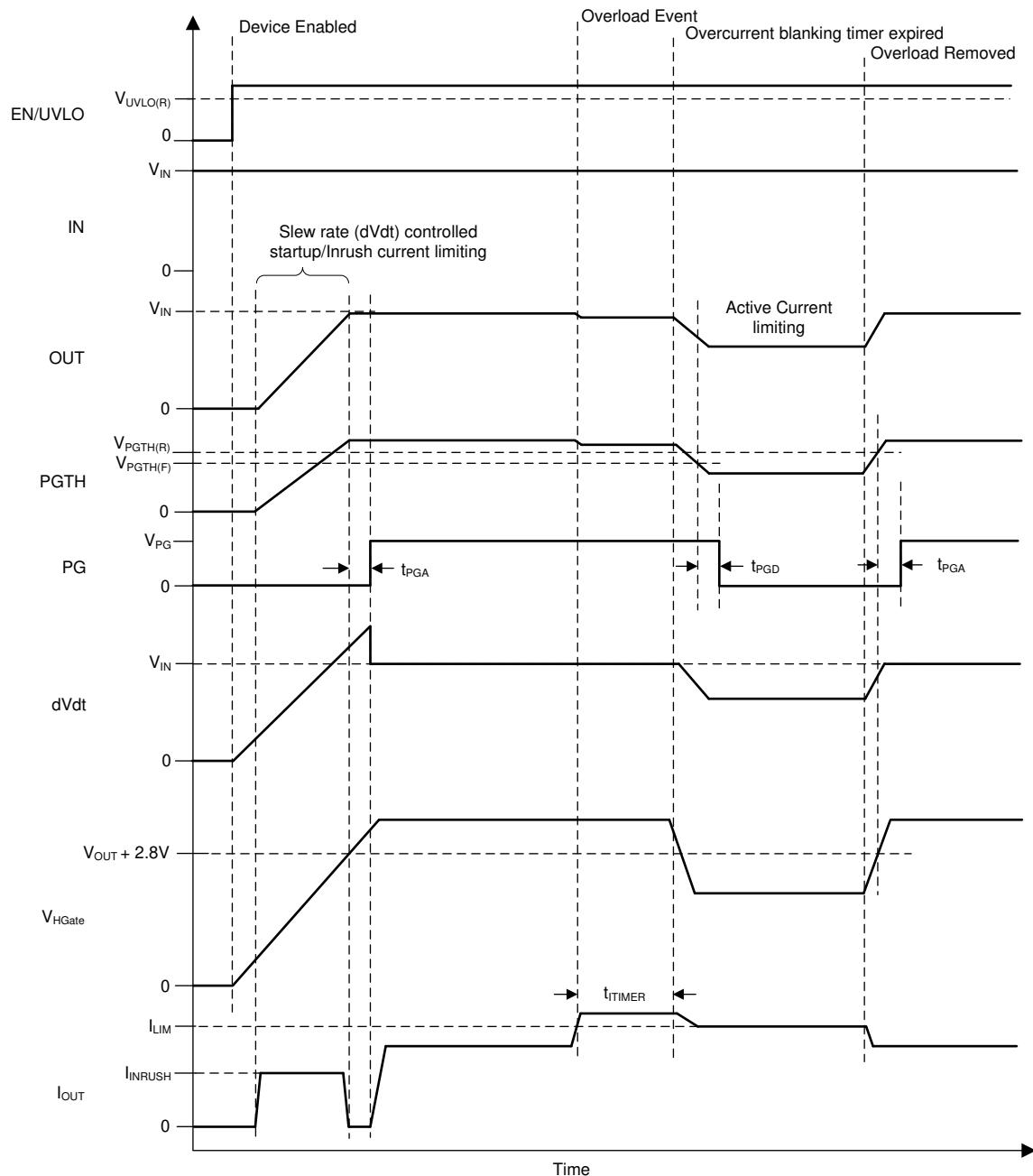



图 8-10. TPS2521xx PG Timing Diagram

表 8-4. TPS2521xx PG Indication Summary

| Event                      | Protection Response | PG Pin                                                                               | PG Delay               |
|----------------------------|---------------------|--------------------------------------------------------------------------------------|------------------------|
| Undervoltage (UVP or UVLO) | Shutdown            | L                                                                                    |                        |
| Input Reverse Polarity     | Shutdown            | L                                                                                    |                        |
| Overvoltage (OVC)          | Clamp               | H (If PGTH pin voltage > $V_{PGTH(R)}$ )<br>L (If PGTH pin voltage < $V_{PGTH(F)}$ ) | $t_{PGA}$<br>$t_{PGD}$ |

**表 8-4. TPS2521xx PG Indication Summary (continued)**

| Event                                                | Protection Response                 | PG Pin                                                                               | PG Delay               |
|------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------|------------------------|
| Steady State                                         | NA                                  | H (If PGTH pin voltage > $V_{PGTH(R)}$ )<br>L (If PGTH pin voltage < $V_{PGTH(F)}$ ) | $t_{PGA}$<br>$t_{PGD}$ |
| Transient Overcurrent                                | NA                                  | H (If PGTH pin voltage > $V_{PGTH(R)}$ )<br>L (If PGTH pin voltage < $V_{PGTH(F)}$ ) | $t_{PGA}$<br>$t_{PGD}$ |
| Persistent Overload                                  | Current Limiting                    | H (If PGTH pin voltage > $V_{PGTH(R)}$ )<br>L (If PGTH pin voltage < $V_{PGTH(F)}$ ) | $t_{PGA}$<br>$t_{PGD}$ |
| Output Short-Circuit to GND                          | Fast trip followed by Current Limit | H (If PGTH pin voltage > $V_{PGTH(R)}$ )<br>L (If PGTH < $V_{PGTH(F)}$ )             | $t_{PGA}$<br>$t_{PGD}$ |
| ILM Pin Open                                         | Shutdown                            | L (If PGTH pin voltage < $V_{PGTH(F)}$ )                                             | $t_{PGD}$              |
| ILM Pin Shorted to GND                               | Shutdown                            | L (If PGTH < $V_{PGTH(F)}$ )                                                         | $t_{PGD}$              |
| Reverse Current ( $ V_{OUT} - V_{IN}  > V_{REVTH}$ ) | Reverse Current Blocking            | L                                                                                    | $t_{PGD}$              |
| Overtemperature                                      | Shutdown                            | L                                                                                    |                        |

When there is no supply to the device, the PG pin is expected to stay low. However, there is no active pulldown in this condition to drive this pin all the way down to 0 V. If the PG pin is pulled up to an independent supply which is present even if the device is unpowered, there can be a small voltage seen on this pin depending on the pin sink current, which is a function of the pullup supply voltage and resistor. Minimize the sink current to keep this pin voltage low enough not to be detected as a logic HIGH by associated external circuits in this condition.

#### 8.4 Device Functional Modes

**表 8-5. TPS2521xx Overvoltage Clamp Threshold Selection**

| OVCSEL Pin Connection | Overvoltage Clamp Threshold |
|-----------------------|-----------------------------|
| Shorted to GND        | 3.8 V                       |
| Open                  | 5.7 V                       |

## 9 Application and Implementation

### 备注

以下应用部分中的信息不属于 TI 器件规格的范围，TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计，以确保系统功能。

### 9.1 Application Information

The TPS2521xx is a 2.7-V to 5.7-V, 4-A eFuse that is typically used for power rail protection applications. The device can withstand maximum input voltage of 28 V with adjustable undervoltage lockout and fast overvoltage clamp protection. The device provides ability to control inrush current and protection against input reverse polarity as well as reverse current conditions. The device can be used in a variety of systems such as adapter input protection, storage - eSSD/cSSD, e-meters, smart speakers, headphones, USB power accessories. The design procedure explained in the subsequent sections can be used to select the supporting component values based on the application requirement. Additionally, a spreadsheet design tool, [TPS2521x Design Calculator](#), is available in the web product folder.

### 9.2 Single Device, Self-Controlled

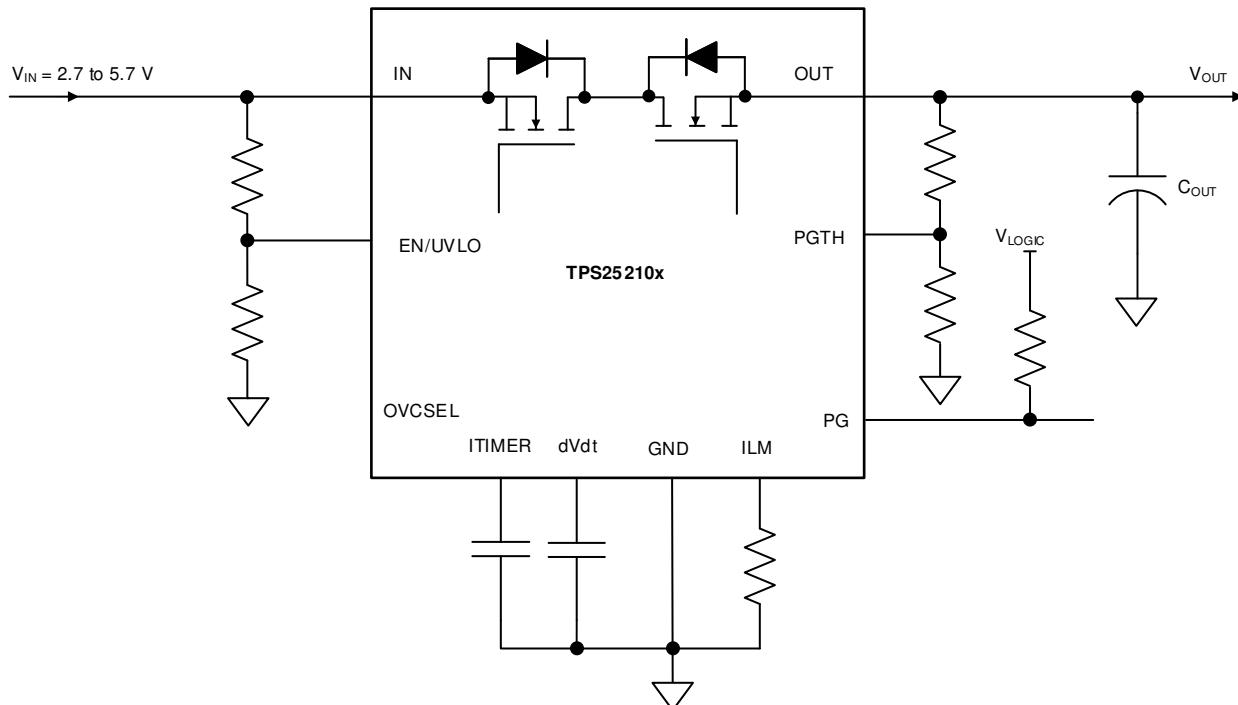



图 9-1. Single Device, Self-Controlled

#### Other variations:

In a Host MCU controlled system, EN/UVLO or OVCSEL can also be driven from the host GPIO to control/configure the device operation.

ILM pin can be connected to the MCU ADC input for current monitoring purpose.

### 备注

TI recommends to keep parasitic capacitance on ILM pin below 50 pF to ensure stable operation.

Either  $V_{IN}$  or  $V_{OUT}$  can be used to drive the PGTH resistor divider depending on which supply needs to be monitored for power good indication.

### 9.3 Typical Application

End equipments like PC, notebooks, docking stations, monitors, and so on have USB PD ports which can be configured as DFP (Source), UFP (Sink) or DRP (Source + Sink). TPS2521xx can be used independently or in conjunction with LM73100 to handle the power path protection requirements of USB PD ports as shown in [图 9-2](#) below.

TPS2521xx provides overcurrent and short-circuit protection in the source path, while blocking any reverse current from the port to the internal source power rail. The fast recovery ( $t_{SWRCB}$ ) from reverse current blocking ensures minimum supply droop during Fast Role Swap (FRS) events.

The LM73100 provides overvoltage protection on the sink path, while blocking reverse current from internal sink rail to the port.

The linear ORing mechanism in TPS2521xx and LM73100 ensures that there is no reverse current flowing from one power source to the other during fast or slow ramp of either supply.

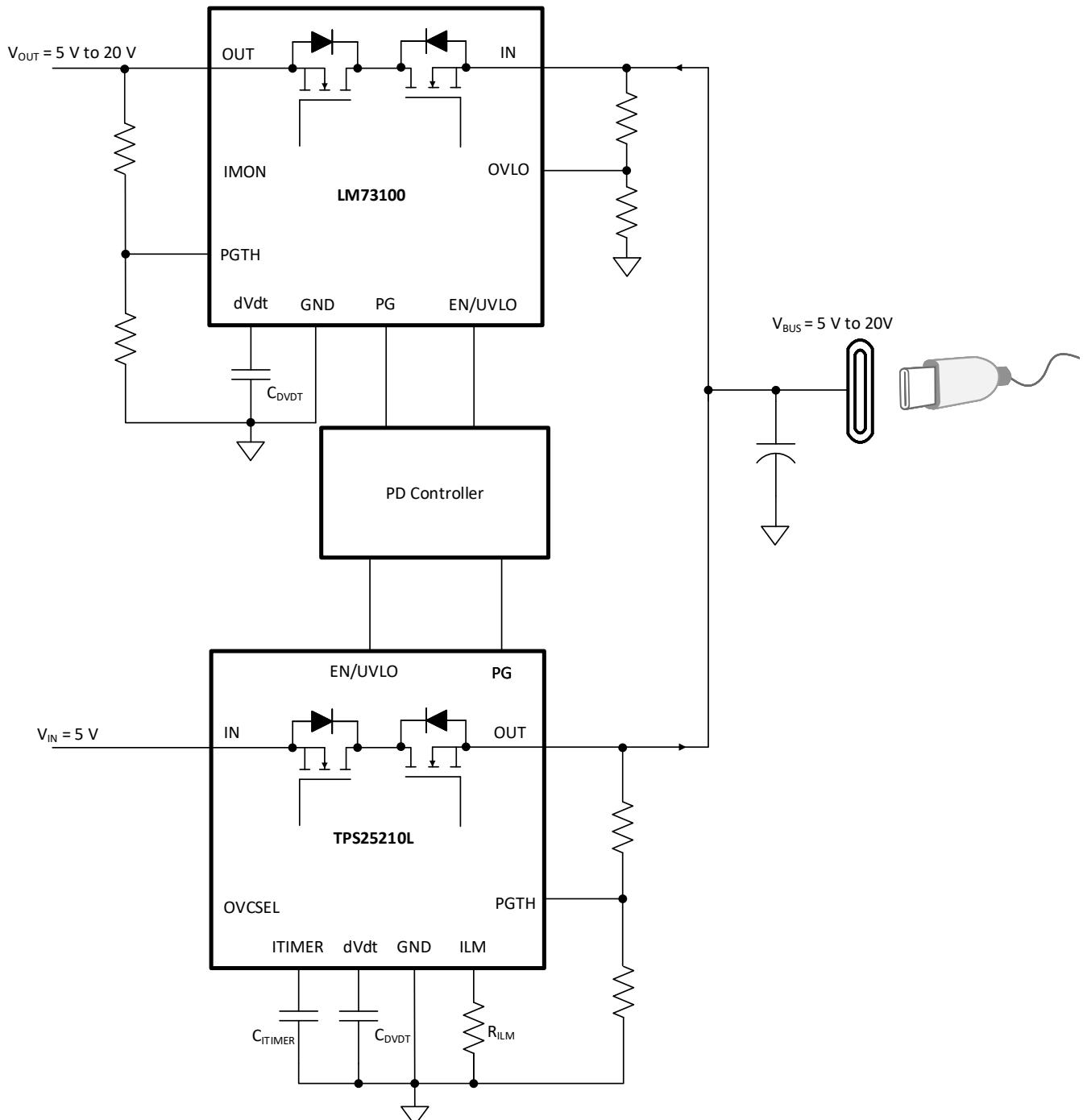



图 9-2. USB PD Port Protection

### 9.3.1 Application

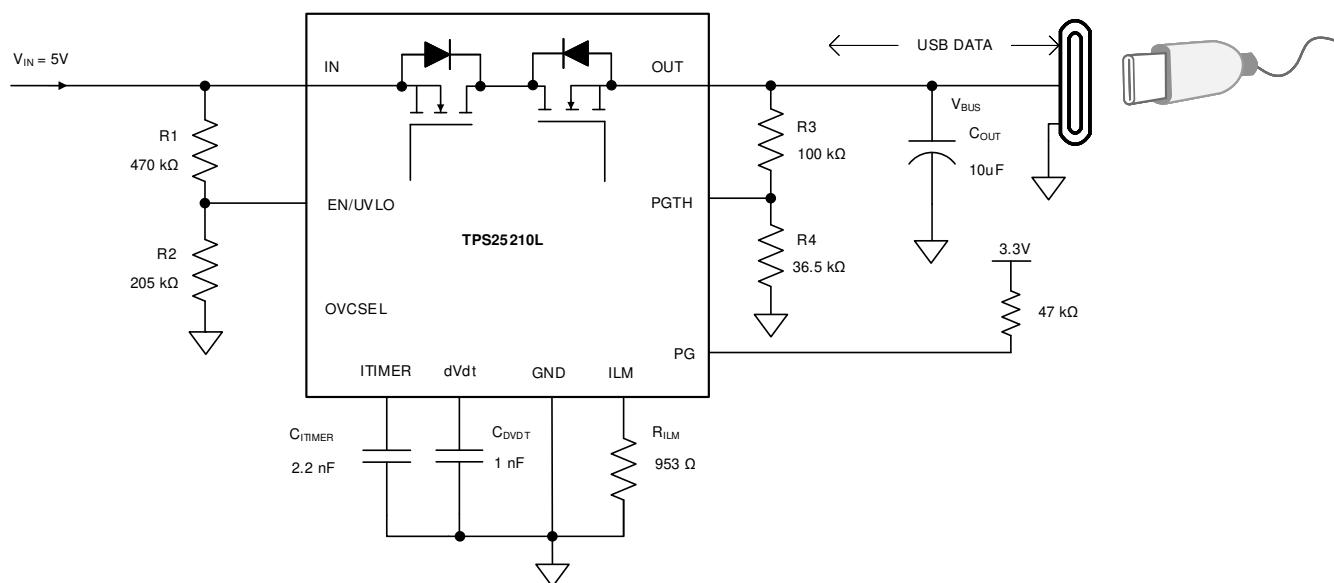



图 9-3. TPS2521xx Application Circuit for USB PD Source Path Protection

### 9.3.2 Design Requirements

表 9-1. Design Parameters

| PARAMETER                                         | VALUE         |
|---------------------------------------------------|---------------|
| Input supply voltage ( $V_{IN}$ )                 | 5 V           |
| Undervoltage threshold ( $V_{IN(UV)}$ )           | 4 V           |
| Overvoltage clamp ( $V_{IN(OVC)}$ )               | 5.7 V         |
| Output Power Good threshold ( $V_{PG}$ )          | 4.5 V         |
| Output capacitance ( $C_{OUT}$ )                  | 10 $\mu$ F    |
| Output Slew Rate (SR)                             | 2 V/ms        |
| Max continuous current                            | 3 A           |
| Overcurrent response                              | Current limit |
| Current limit threshold ( $I_{LIM}$ )             | 3.5 A         |
| Load transient blanking interval ( $t_{ITIMER}$ ) | 2 ms          |
| Fault response                                    | Latch-off     |

### 9.3.3 Detailed Design Procedure

#### 9.3.3.1 Device Selection

Because the application requires current limit response to overcurrent with latch-off response after a fault, the TPS25210L variant is selected after referring to the [Device Comparison Table](#).

#### 9.3.3.2 Setting Undervoltage and Overvoltage Thresholds

The supply undervoltage threshold is set using the resistors R1, R2 and can be calculated using [方程式 7](#):

$$V_{IN(UV)} = \frac{V_{UVLO(R)} \times (R1 + R2)}{R2} \quad (7)$$

$V_{UVLO(R)}$  is the UVLO rising threshold. Because R1 and R2 leak the current from input supply  $V_{IN}$ , these resistors must be selected based on the acceptable leakage current from input power supply  $V_{IN}$ . The current drawn by R1 and R2 from the power supply is  $IR12 = V_{IN} / (R1 + R2)$ . However, leakage currents due to external active

components connected to the resistor string can add error to these calculations. So, the resistor string current,  $I_{R12}$  must be chosen to be 20 times greater than the leakage current expected on the EN/UVLO pin.

From the device electrical specifications, the EN/UVLO leakage current is  $0.1 \mu A$  (maximum), and  $V_{UVLO(R)} = 1.2 V$ . From design requirements,  $V_{IN(UV)} = 4 V$ . To solve the equation, first choose the value of  $R1 = 470 k\Omega$  and use the above equation to solve for  $R2 = 201.4 k\Omega$ .

Using the closest standard 1% resistor values, we get  $R1 = 470 k\Omega$  and  $R2 = 205 k\Omega$ .

Refer to 表 8-5 to set overvoltage clamp. OVCSEL pin is left open to select overvoltage clamp as 5.7 V.

### 9.3.3.3 Setting Output Voltage Rise Time ( $t_R$ )

The slew rate (SR) needed to meet the target specification is:

$$SR (V/ms) = 2 V/ms \quad (8)$$

The  $C_{dVdt}$  needed to achieve this slew rate can be calculated as:

$$C_{dVdt} (pF) = \frac{2000}{SR (V/ms)} = \frac{2000}{2} = 1000 pF \quad (9)$$

Choose the nearest standard capacitor value as 1 nF.

For this slew rate, the inrush current can be calculated as:

$$I_{INRUSH} (mA) = SR (V/ms) \times C_{OUT} (\mu F) = 2 \times 10 = 20 mA \quad (10)$$

The average power dissipation inside the part during inrush can be calculated as:

$$PD_{INRUSH} (W) = \frac{I_{INRUSH} (A) \times V_{IN} (V)}{2} = \frac{0.02 \times 5}{2} = 0.05 W \quad (11)$$

The power dissipation is below the allowed limit for a successful start-up without hitting thermal shut-down within the target rise time as shown in 图 9-4.

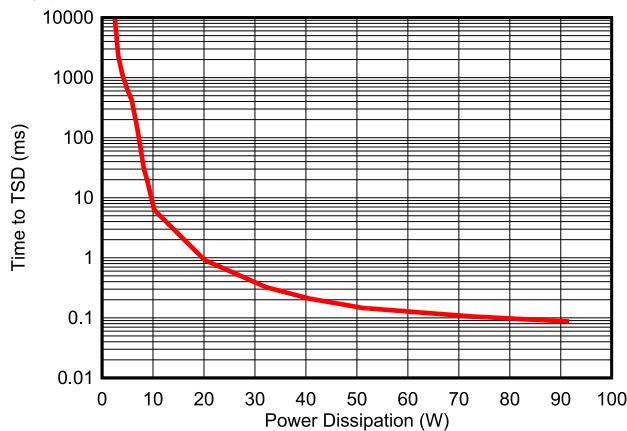



图 9-4. Thermal Shut-Down Plot During Inrush

### 9.3.3.4 Setting Power Good Assertion Threshold

The Power Good assertion threshold can be set using the resistors R3 and R4 connected to the PGTH pin whose values can be calculated as:

$$V_{PG} = \frac{V_{PGTH(R)} \times (R3 + R4)}{R4} \quad (12)$$

Because R3 and R4 leak the current from the output rail  $V_{OUT}$ , these resistors must be selected to minimize the leakage current. The current drawn by R3 and R4 from the power supply is  $IR34 = V_{OUT} / (R3 + R4)$ . However, leakage currents due to external active components connected to the resistor string can add error to these calculations. So, the resistor string current, IR34 must be chosen to be 20 times greater than the PGTH leakage current expected.

From the device electrical specifications, PGTH leakage current is 1  $\mu$ A (maximum),  $V_{PGTH(R)} = 1.2$  V and from design requirements,  $V_{PG} = 4.5$  V. To solve the equation, first choose the value of  $R3 = 100$  k $\Omega$  and calculate  $R4 = 36.4$  k $\Omega$ . Choose nearest 1% standard resistor value as  $R4 = 36.5$  k $\Omega$ .

### 9.3.3.5 Setting Overcurrent Threshold ( $I_{LIM}$ )

The overcurrent protection (Current limit) threshold can be set using the  $R_{ILM}$  resistor whose value can be calculated as:

$$R_{ILM} (\Omega) = \frac{3334}{I_{LIM} (A)} = \frac{3334}{3.5 \text{ A}} = 952.57 \Omega \quad (13)$$

Choose nearest 1% standard resistor value as 953  $\Omega$ .

### 9.3.3.6 Setting Overcurrent Blanking Interval ( $t_{ITIMER}$ )

The overcurrent blanking timer interval can be set using the  $C_{ITIMER}$  capacitor whose value can be calculated as:

$$C_{ITIMER} (\text{nF}) = \frac{t_{ITIMER} (\text{ms}) \times I_{ITIMER} (\mu\text{A})}{\Delta V_{ITIMER} (\text{V})} = \frac{2 \times 1.8}{1.5} = 2.4 \text{ nF} \quad (14)$$

Choose nearest standard capacitor value as 2.2 nF.

### 9.3.4 Application Curves

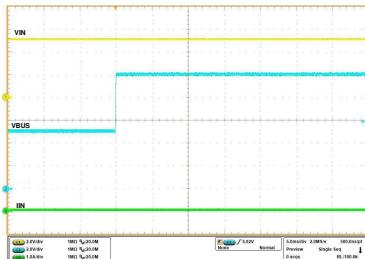



图 9-5. VBUS 20-V Hot-Plug

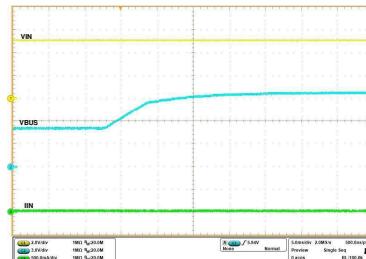
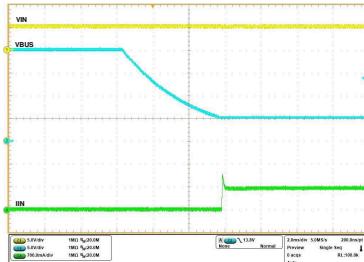




图 9-6. VBUS 20-V Slow Ramp Up



$V_{IN} = 5 \text{ V}$ ,  $C_{OUT} = 10 \text{ } \mu\text{F}$ ,  $R_{OUT} = 8 \text{ } \Omega$ ,  $V_{BUS} = 20 \text{ V}$  initially and then disconnected

图 9-7. Fast Role Swap

## 10 Power Supply Recommendations

The TPS2521xx devices are designed for a supply voltage range of  $2.7 \text{ V} \leq V_{IN} \leq 5.7 \text{ V}$ . TI recommends an input ceramic bypass capacitor higher than  $0.1 \mu\text{F}$  if the input supply is located more than a few inches from the device. The power supply must be rated higher than the set current limit to avoid voltage droops during overcurrent and short-circuit conditions.

The lowest negative voltage the device can handle at the input is limited to  $-15 \text{ V}$  or  $V_{OUT} - 21 \text{ V}$ , whichever is higher. Any low voltage signals (for example, EN/UVLO, PGTH) derived from the input supply must have a sufficiently large pullup resistor to limit the current through those pins to  $< 10 \mu\text{A}$  during reverse polarity conditions. Please refer to [Absolute Maximum Ratings](#) table for more details.

### 10.1 Transient Protection

In the case of a short-circuit and overload current limit when the device interrupts current flow, the input inductance generates a positive voltage spike on the input, and the output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on the value of inductance in series to the input or output of the device. Such transients can exceed the absolute maximum ratings of the device if steps are not taken to address the issue. Typical methods for addressing transients include:

- Minimize lead length and inductance into and out of the device.
- Use a large PCB GND plane.
- Use a Schottky diode across the output to absorb negative spikes.
- Connect a low ESR capacitor of value greater than  $1 \mu\text{F}$  at the OUT pin very close to the device.
- Use a low-value ceramic capacitor  $C_{IN} = 1 \mu\text{F}$  to absorb the energy and dampen the transients. The capacitor voltage rating must be at least twice the input supply voltage to be able to withstand the positive voltage excursion during inductive ringing.

The approximate value of input capacitance can be estimated with [方程式 15](#):

$$V_{SPIKE \text{ (Absolute)}} = V_{IN} + I_{LOAD} \times \sqrt{\frac{L_{IN}}{C_{IN}}} \quad (15)$$

where

- $V_{IN}$  is the nominal supply voltage.
- $I_{LOAD}$  is the load current.
- $L_{IN}$  equals the effective inductance seen looking into the source.
- $C_{IN}$  is the capacitance present at the input.

Some applications can require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from exceeding the absolute maximum ratings of the device. In some cases, even if the maximum amplitude of the transients is below the absolute maximum rating of the device, a TVS can help to absorb the excessive energy dump and prevent it from creating very fast transient voltages on the input supply pin of the IC, which can couple to the internal control circuits and cause unexpected behavior.

#### 备注

If there is a likelihood of input reverse polarity in the system, TI recommends to use a bi-directional TVS, or a reverse blocking diode in series with the TVS.

For applications such as USB-C ports where a powered cable can be plugged to the output of the device, there can be excess voltage stress from OUT to IN which exceeds the absolute maximum rating of the device. TI recommends to add a TVS diode from OUT to IN to clamp the voltage to a safe level.

The circuit implementation with optional protection components is shown in [图 10-1](#).

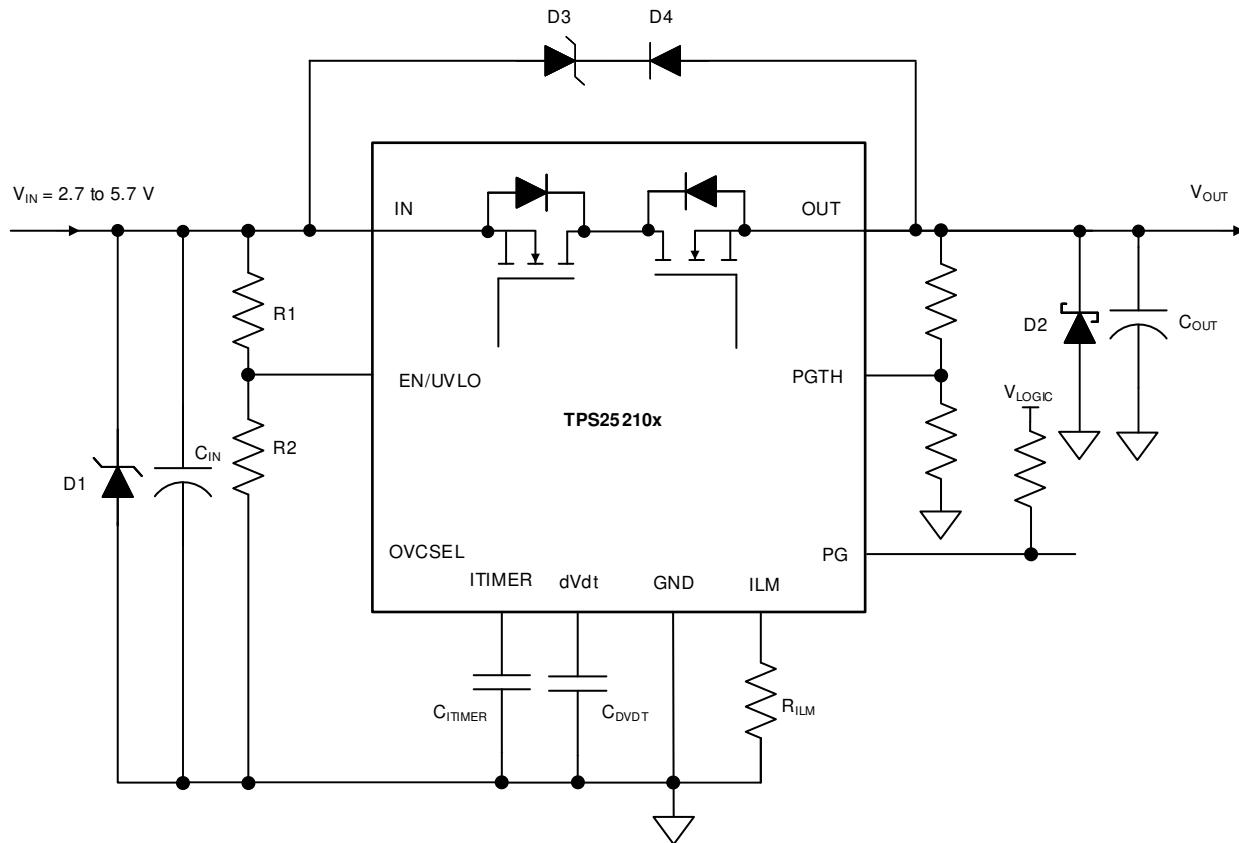



图 10-1. Circuit Implementation with Optional Protection Components

## 10.2 Output Short-Circuit Measurements

Obtain repeatable and similar short-circuit testing results is difficult. The following contribute to variation in results:

- Source bypassing
- Input leads
- Circuit layout
- Component selection
- Output shorting method
- Relative location of the short
- Instrumentation

The actual short exhibits a certain degree of randomness because it microscopically bounces and arcs. Ensure that configuration and methods are used to obtain realistic results. Do not expect to see waveforms exactly like those in this data sheet because every setup is different.

## 11 Layout

### 11.1 Layout Guidelines

- For all applications, TI recommends a ceramic decoupling capacitor of  $0.1 \mu F$  or greater between the IN terminal and GND terminal.
- The optimal placement of the decoupling capacitor is closest to the IN and GND terminals of the device. Care must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the GND terminal of the IC.
- High current-carrying power-path connections must be as short as possible and must be sized to carry at least twice the full-load current.
- The GND terminal must be tied to the PCB ground plane at the terminal of the IC with the shortest possible trace. The PCB ground must be a copper plane or island on the board. It's recommended to have a separate ground plane island for the eFuse. This plane doesn't carry any high currents and serves as a quiet ground reference for all the critical analog signals of the eFuse. The device ground plane should be connected to the system power ground plane using a star connection.
- The IN and OUT pins are used for heat dissipation. Connect to as much copper area on top and bottom PCB layers using as possible. Adding thermal vias on the under the device further helps to minimize the voltage gradient across the IN and OUT pads and distribute current uniformly through the device, which improves the on-resistance and current sense accuracy.
- Locate the following support components close to their connection pins:
  - $R_{ILM}$
  - $C_{dVdT}$
  - $C_{ITIMER}$
  - Resistors for the EN/UVLO, OVCSEL and PGTH pins
- Connect the other end of the component to the GND pin of the device with shortest trace length. The trace routing for the  $R_{ILM}$ ,  $C_{ITIMER}$  and  $C_{dVdT}$  components to the device must be as short as possible to reduce parasitic effects on the current limit, overcurrent blanking interval and soft start timing. TI recommends to keep parasitic capacitance on ILM pin below  $50 \text{ pF}$  to ensure stable operation. These traces must not have any coupling to switching signals on the board.
- Because the bias current on ILM pin directly controls the overcurrent protection behavior of the device, the PCB routing of this node must be kept away from any noisy (switching) signals.
- Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the device they are intended to protect. These protection devices must be routed with short traces to reduce inductance. For example, a protection Schottky diode is recommended to address negative transients due to switching of inductive loads. TI also recommends to add a ceramic decoupling capacitor of  $1 \mu F$  or greater between OUT and GND. These components must be physically close to the OUT pins. Care must be taken to minimize the loop area formed by the Schottky diode/bypass-capacitor connection, the OUT pin and the GND terminal of the IC.

## 11.2 Layout Example

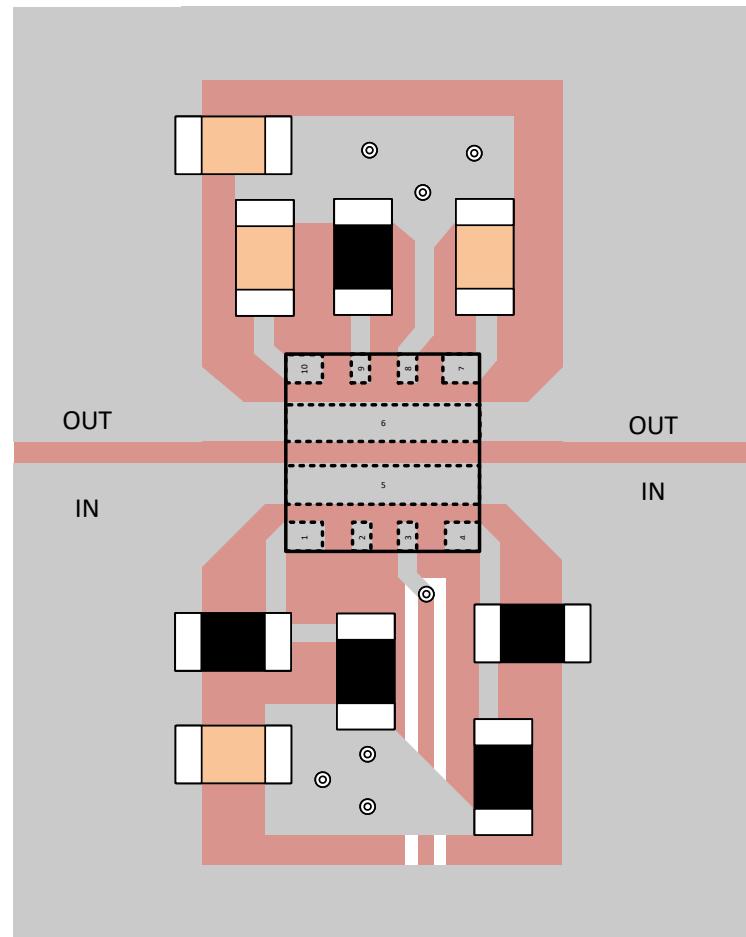
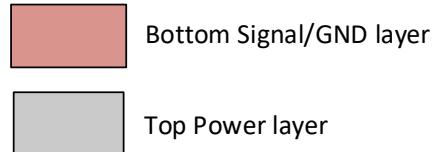




图 11-1. Layout Example

## 12 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

### 12.1 Documentation Support

#### 12.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, [TPS25210EVM eFuse Evaluation Board user's guide](#)
- Texas Instruments, [TPS2521x Design Calculator](#)
- Texas Instruments, [Fast Role Swap, Linear ORing with TPS25947 and LM73100 in USB Type-C systems application brief](#)
- Texas Instruments, [eFuses in Smart Electricity Meters application brief](#)

### 12.2 接收文档更新通知

要接收文档更新通知，请导航至 [ti.com](#) 上的器件产品文件夹。点击 [订阅/更新](#) 进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

### 12.3 支持资源

[TI E2E™ 支持论坛](#)是工程师的重要参考资料，可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的 [《使用条款》](#)。

### 12.4 Trademarks

[TI E2E™](#) is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

### 12.5 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 12.6 术语表

#### TI 术语表

本术语表列出并解释了术语、首字母缩略词和定义。

## 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

**PACKAGING INFORMATION**

| Orderable part number         | Status<br>(1) | Material type<br>(2) | Package   Pins     | Package qty   Carrier | RoHS<br>(3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6) |
|-------------------------------|---------------|----------------------|--------------------|-----------------------|-------------|--------------------------------------|-----------------------------------|--------------|---------------------|
| <a href="#">TPS25210ARPWR</a> | Active        | Production           | VQFN-HR (RPW)   10 | 3000   LARGE T&R      | Yes         | SN                                   | Level-2-260C-1 YEAR               | -40 to 125   | 2AJH                |
| TPS25210ARPWR.A               | Active        | Production           | VQFN-HR (RPW)   10 | 3000   LARGE T&R      | Yes         | SN                                   | Level-2-260C-1 YEAR               | -40 to 125   | 2AJH                |
| TPS25210ARPWR.B               | Active        | Production           | VQFN-HR (RPW)   10 | 3000   LARGE T&R      | Yes         | SN                                   | Level-2-260C-1 YEAR               | -40 to 125   | 2AJH                |
| <a href="#">TPS25210LRPWR</a> | Active        | Production           | VQFN-HR (RPW)   10 | 3000   LARGE T&R      | Yes         | SN                                   | Level-2-260C-1 YEAR               | -40 to 125   | 2AIH                |
| TPS25210LRPWR.A               | Active        | Production           | VQFN-HR (RPW)   10 | 3000   LARGE T&R      | Yes         | SN                                   | Level-2-260C-1 YEAR               | -40 to 125   | 2AIH                |
| TPS25210LRPWR.B               | Active        | Production           | VQFN-HR (RPW)   10 | 3000   LARGE T&R      | Yes         | SN                                   | Level-2-260C-1 YEAR               | -40 to 125   | 2AIH                |

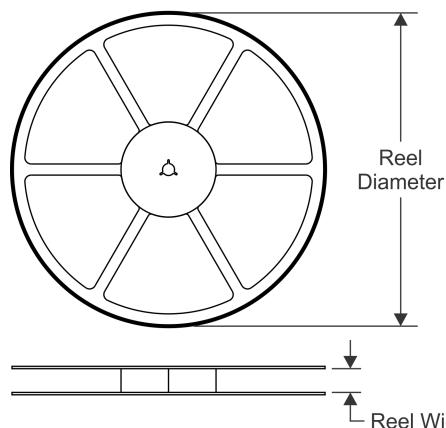
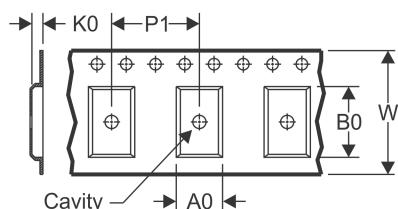
<sup>(1)</sup> **Status:** For more details on status, see our [product life cycle](#).

<sup>(2)</sup> **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

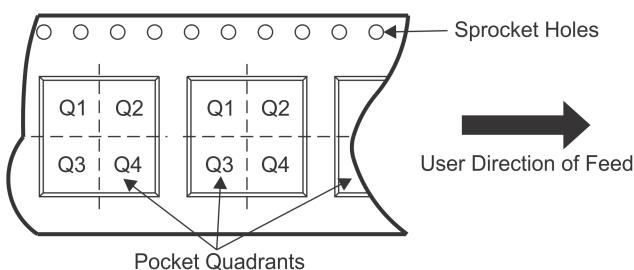
<sup>(3)</sup> **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

<sup>(4)</sup> **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

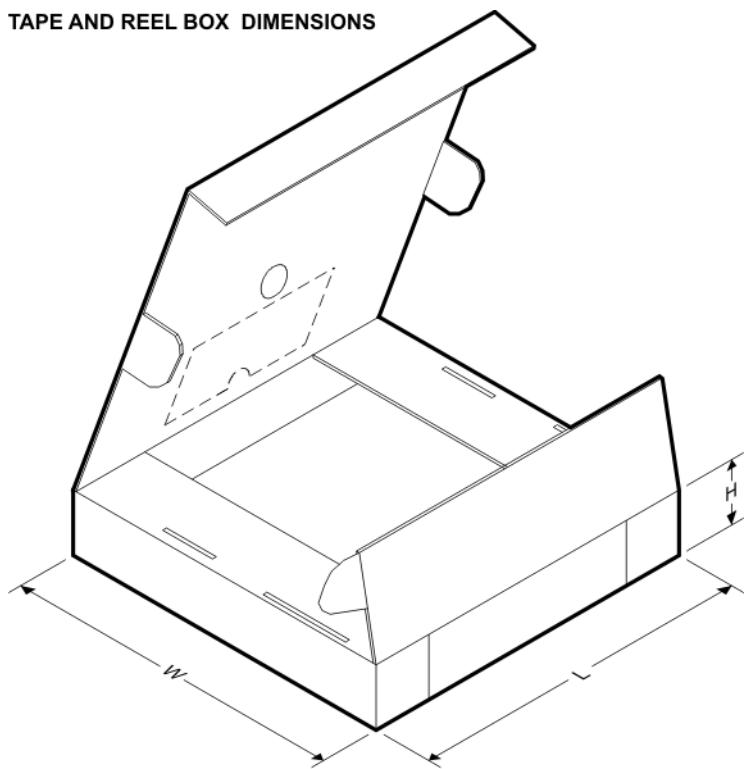


<sup>(6)</sup> **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.




**TAPE AND REEL INFORMATION**
**REEL DIMENSIONS**

**TAPE DIMENSIONS**


|    |                                                           |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

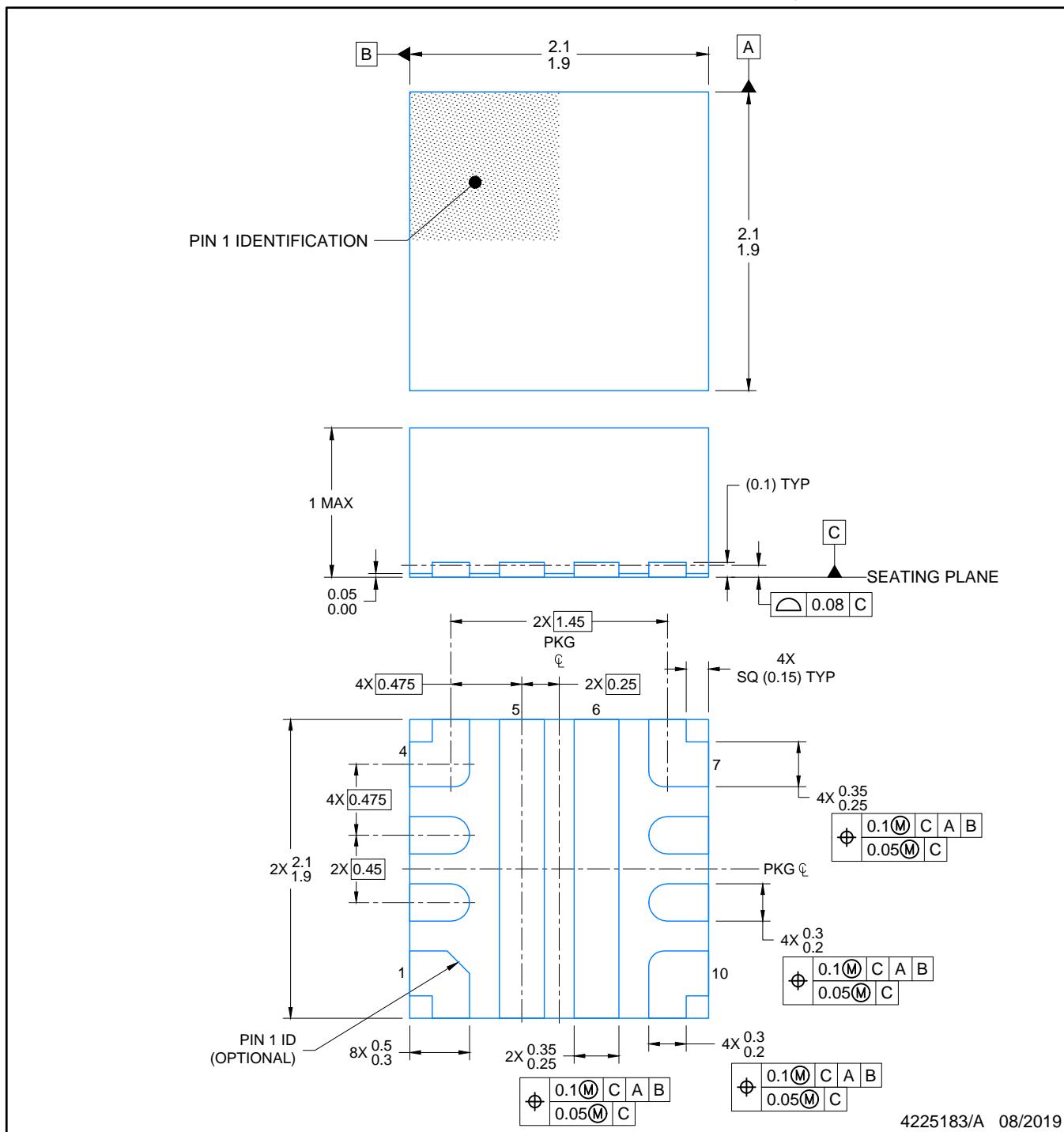
**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**


\*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Reel Diameter (mm) | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1 Quadrant |
|---------------|--------------|-----------------|------|------|--------------------|--------------------|---------|---------|---------|---------|--------|---------------|
| TPS25210ARPWR | VQFN-HR      | RPW             | 10   | 3000 | 180.0              | 8.4                | 2.3     | 2.3     | 1.15    | 4.0     | 8.0    | Q2            |
| TPS25210LRPWR | VQFN-HR      | RPW             | 10   | 3000 | 180.0              | 8.4                | 2.3     | 2.3     | 1.15    | 4.0     | 8.0    | Q2            |

**TAPE AND REEL BOX DIMENSIONS**

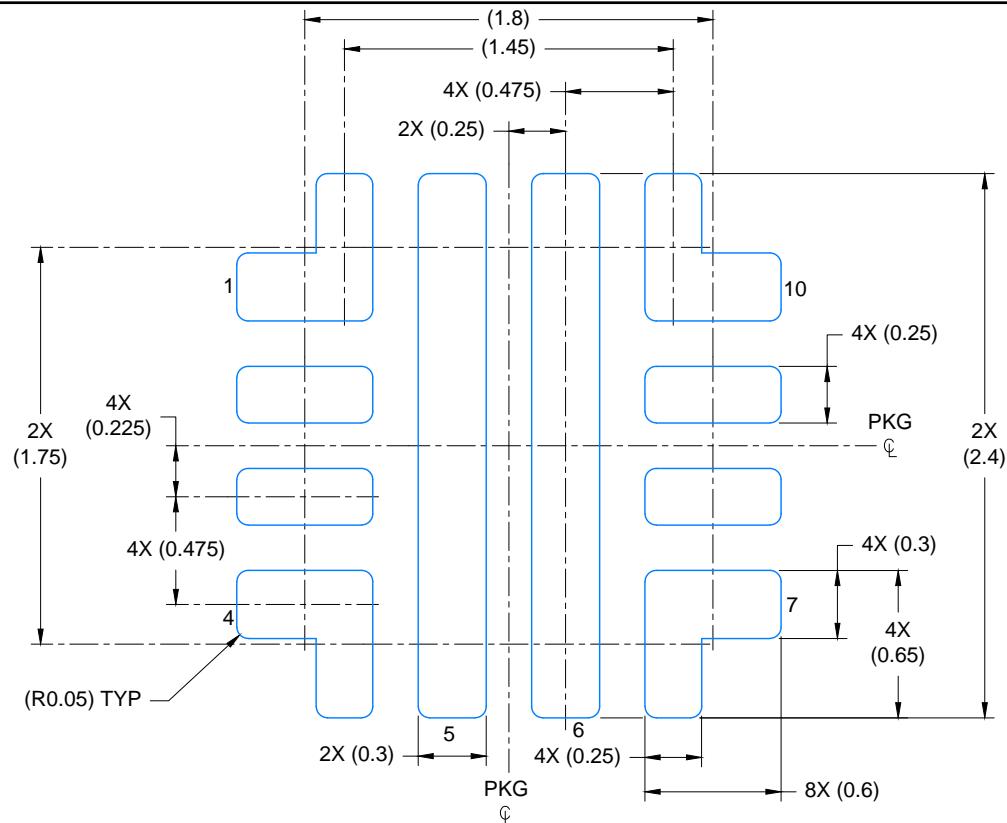

\*All dimensions are nominal


| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS25210ARPWR | VQFN-HR      | RPW             | 10   | 3000 | 210.0       | 185.0      | 35.0        |
| TPS25210LRPWR | VQFN-HR      | RPW             | 10   | 3000 | 210.0       | 185.0      | 35.0        |

**RPW0010A**

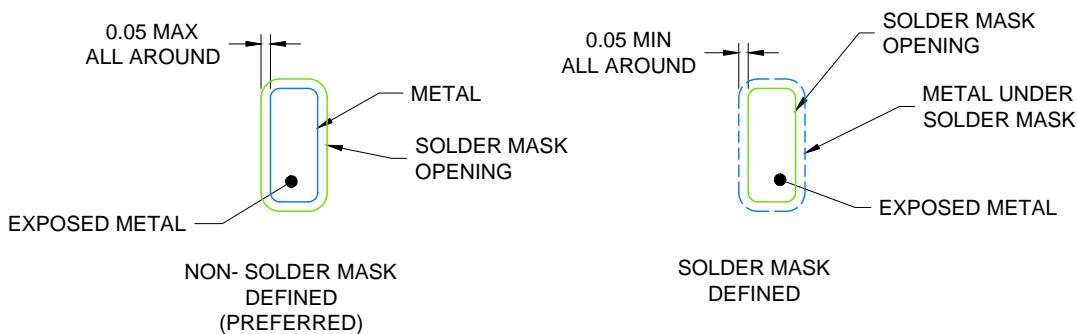
# PACKAGE OUTLINE

## VQFN-HR - 1 mm max height


## PLASTIC QUAD FLATPACK - NO LEAD



**NOTES:**


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.

PLASTIC QUAD FLATPACK - NO LEAD



## LAND PATTERN EXAMPLE

SCALE: 30X

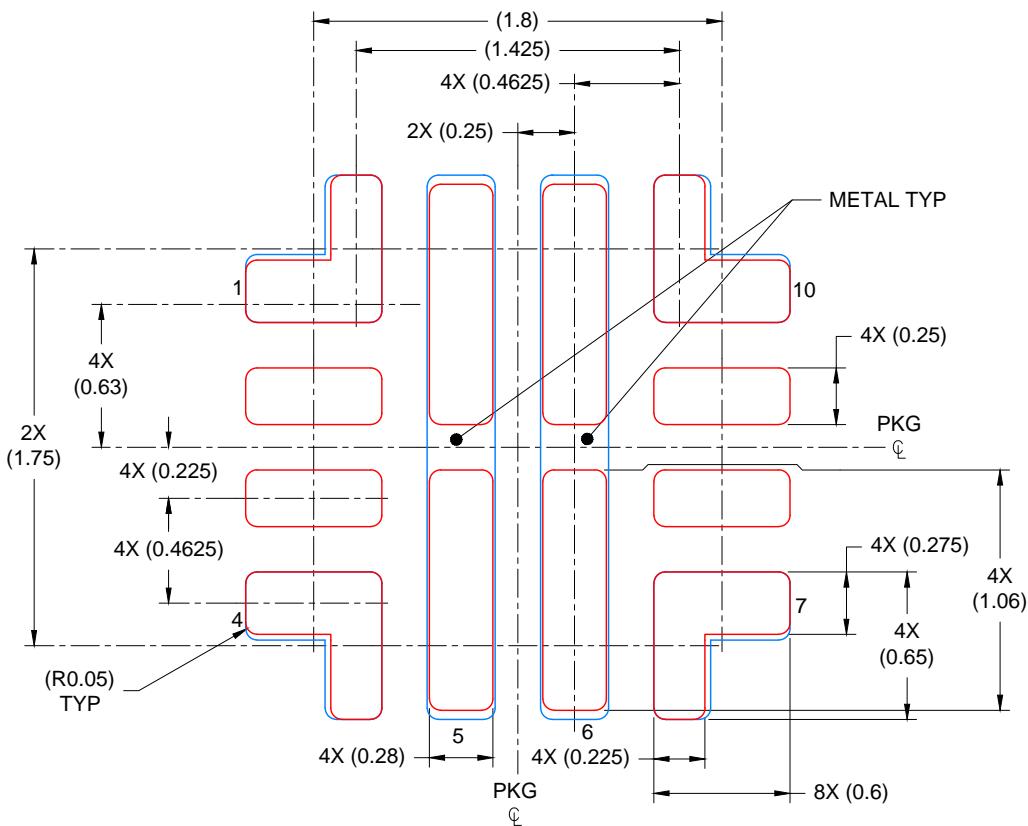


## SOLDER MASK DETAILS

NOT TO SCALE

4225183/A 08/2019

NOTES: (continued)


3. For more information, see Texas Instruments literature number SLUA271 ([www.ti.com/lit/slua271](http://www.ti.com/lit/slua271)).
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

# EXAMPLE STENCIL DESIGN

RPW0010A

VQFN-HR - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL

PADS 1, 4,7 & 10: 93%; PADS 5 & 6: 82%  
SCALE: 30X

4225183/A 08/2019

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

## 重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，TI 对此概不负责。

TI 提供的产品受 [TI 的销售条款](#) 或 [ti.com](#) 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址：Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

版权所有 © 2025, 德州仪器 (TI) 公司