

NLSX3013

8-Bit 100 Mb/s Configurable Dual-Supply Level Translator

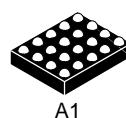
The NLSX3013 is a 8-bit configurable dual-supply bidirectional level translator without a direction control pin. The I/O V_{CC} – and I/O V_L –ports are designed to track two different power supply rails, V_{CC} and V_L respectively. The V_{CC} supply rail is configurable from 1.3 V to 4.5 V while the V_L supply rail is configurable from 0.9 V to $(V_{CC} - 0.4)$ V. This allows lower voltage logic signals on the V_L side to be translated into higher voltage logic signals on the V_{CC} side, and vice-versa. Both I/O ports are auto-sensing; thus, no direction pin is required.

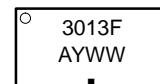
The Output Enable (EN) input, when Low, disables both I/O ports by putting them in 3-state. This significantly reduces the supply currents from both V_{CC} and V_L . The EN signal is designed to track V_L .

Features

- Wide High-Side V_{CC} Operating Range: 1.3 V to 4.5 V
Wide Low-Side V_L Operating Range: 0.9 V to $(V_{CC} - 0.4)$ V
- High-Speed with 100 Mb/s Guaranteed Date Rate for $V_L > 1.8$ V
- Low Bit-to-Bit Skew
- Overtoltage Tolerant Enable and I/O Pins
- Non-preferential Powerup Sequencing
- Small packaging: 2.03 mm x 2.54 mm 20 Pin Flip-Chip
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

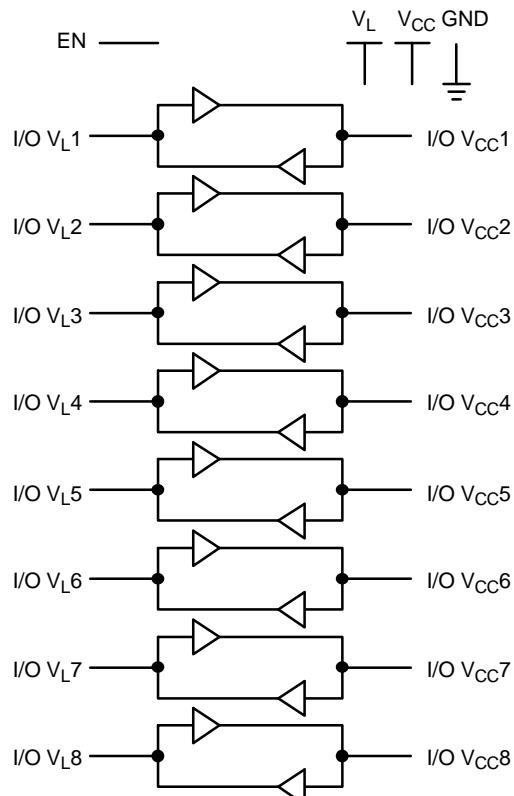

- Mobile Phones, PDAs, Other Portable Devices
- PC and Laptops
- ESD Protection for All Pins: Human Body Model (HBM) > 6000 V


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM for NLSX3013FCT1G

20 PIN FLIP-CHIP
CASE 766AK



for NLSX3013BFCT1G

A = Assembly Location
Y = Year
WW = Work Week
▪ = Pb-Free Package

LOGIC DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

NLSX3013

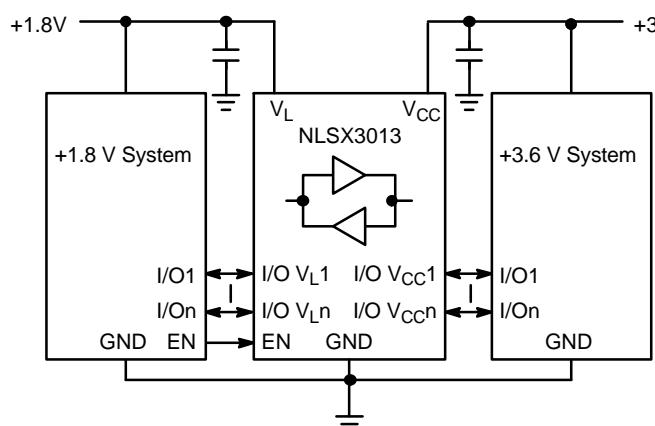


Figure 1. Typical Application Circuit

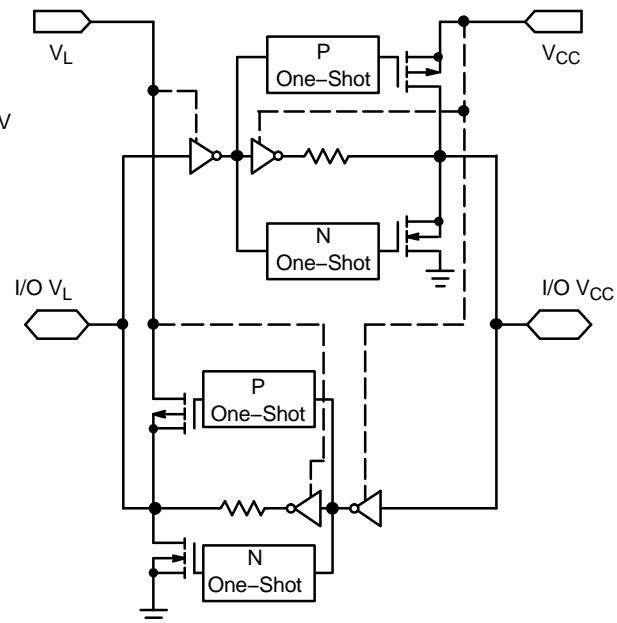
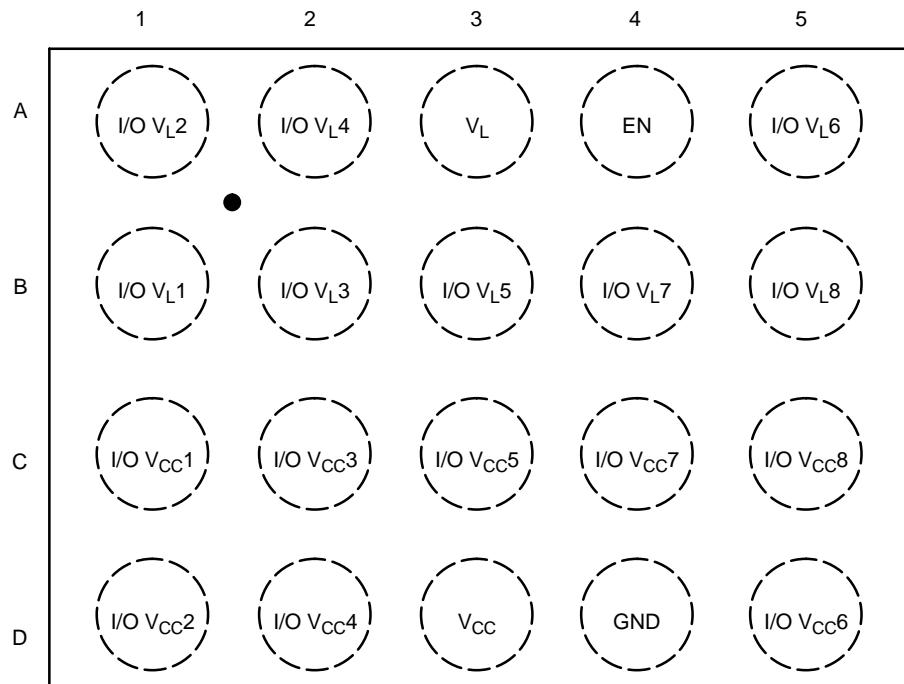


Figure 2. Simplified Functional Diagram (1 I/O Line)
(EN = 1)


PIN ASSIGNMENT

Pins	Description
V _{CC}	V _{CC} Input Voltage
V _L	V _L Input Voltage
GND	Ground
EN	Output Enable
I/O V _{CCn}	I/O Port, Referenced to V _{CC}
I/O V _{Ln}	I/O Port, Referenced to V _L

FUNCTION TABLE

EN	Operating Mode
L	Hi-Z
H	I/O Buses Connected

NLSX3013

Figure 3. 20 Flip-Chip (2.54 mm x 2.03 mm)
(Top View)

PIN ASSIGNMENT

Pin	Name	Description
A1	I/O VL2	I/O Port 2, Referenced to VL
A2	I/O VL4	I/O Port 4, Referenced to VL
A3	VL	VL Input Voltage
A4	EN	Output Enable
A5	I/O VL6	I/O Port 6, Referenced to VL
B1	I/O VL1	I/O Port 1, Referenced to VL
B2	I/O VL3	I/O Port 3, Referenced to VL
B3	I/O VL5	I/O Port 5, Referenced to VL
B4	I/O VL7	I/O Port 7, Referenced to VL
B5	I/O VL8	I/O Port 8, Referenced to VL
C1	I/O VCC1	I/O Port 1, Referenced to VCC
C2	I/O VCC3	I/O Port 3, Referenced to VCC
C3	I/O VCC5	I/O Port 5, Referenced to VCC
C4	I/O VCC7	I/O Port 7, Referenced to VCC
C5	I/O VCC8	I/O Port 8, Referenced to VCC
D1	I/O VCC2	I/O Port 2, Referenced to VCC
D2	I/O VCC4	I/O Port 4, Referenced to VCC
D3	VCC	VCC Input Voltage
D4	GND	Ground
D5	I/O VCC6	I/O Port 6, Referenced to VCC

MAXIMUM RATINGS

Symbol	Parameter	Condition	Value	Unit
V_{CC}	V_{CC} Supply Voltage		−0.5 to +5.5	V
V_L	V_L Supply Voltage		−0.5 to +5.5	V
I/O V_{CC}	V_{CC} –Referenced DC Input/Output Voltage		−0.5 to (V_{CC} + 0.3)	V
I/O V_L	V_L –Referenced DC Input/Output Voltage		−0.5 to (V_L + 0.3)	V
V_{EN}	Enable Control Pin DC Input Voltage		−0.5 to +5.5	V
I_{IK}	Input Diode Clamp Current	$V_I < GND$	−50	mA
I_{OK}	Output Diode Clamp Current	$V_O < GND$	−50	mA
I_{CC}	DC Supply Current Through V_{CC}		±100	mA
I_L	DC Supply Current Through V_L		±100	mA
I_{GND}	DC Ground Current Through Ground Pin		±100	mA
T_{STG}	Storage Temperature Range		−65 to +150	°C
θ_{JA}	Junction-to-Ambient Thermal Resistance (Note 1)		53	°C/W
$\Psi_{JC(\text{top})}$	Junction-to-Case (Top) Thermal Resistance		<10	°C/W
T_J	Junction Temperature		+125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured per JESD51-7, with minimum pad spacing on FR-4 board, using 200 mm² copper area, two 80 mm x 80 mm ground planes and 2.0 ounce copper traces with no air flow.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V_{CC}	V_{CC} Supply Voltage	1.3	4.5	V	
V_L	V_L Supply Voltage	0.9	$V_{CC} - 0.4$	V	
V_{EN}	Enable Control Pin Voltage	GND	4.5	V	
V_{IO}	Bus Input/Output Voltage	$I/O V_{CC}$ $I/O V_L$	GND GND	4.5 4.5	V
T_A	Operating Temperature Range	−40	+85	°C	
$\Delta I/\Delta V$	Input Transition Rise or Rate V_I, V_{IO} from 30% to 70% of V_{CC} ; $V_{CC} = 3.3\text{ V} \pm 0.3\text{ V}$	0	10	ns	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions (Note 2)	V _{CC} (V) (Note 3)	V _L (V) (Note 4)	-40°C to +85°C			Unit
					Min	Typ (Note 5)	Max	
V _{IHC}	I/O V _{CC} Input HIGH Voltage		1.3 to 4.5	0.9 to (V _{CC} – 0.4)	0.8 * V _{CC}	–	–	V
V _{ILC}	I/O V _{CC} Input LOW Voltage		1.3 to 4.5	0.9 to (V _{CC} – 0.4)	–	–	0.2 * V _{CC}	V
V _{IHL}	I/O V _L Input HIGH Voltage		1.3 to 4.5	0.9 to (V _{CC} – 0.4)	0.8 * V _L	–	–	V
V _{ILL}	I/O V _L Input LOW Voltage		1.3 to 4.5	0.9 to (V _{CC} – 0.4)	–	–	0.2 * V _L	V
V _{IH}	Control Pin Input HIGH Voltage	T _A = +25°C	1.3 to 4.5	0.9 to (V _{CC} – 0.4)	0.8 * V _L	–	–	V
V _{IL}	Control Pin Input LOW Voltage	T _A = +25°C	1.3 to 4.5	0.9 to (V _{CC} – 0.4)	–	–	0.2 * V _L	V
V _{OHC}	I/O V _{CC} Output HIGH Voltage	I/O V _{CC} Source Current = 20 μA	1.3 to 4.5	0.9 to (V _{CC} – 0.4)	0.8 * V _{CC}	–	–	V
V _{OLC}	I/O V _{CC} Output LOW Voltage	I/O V _{CC} Sink Current = 20 μA	1.3 to 4.5	0.9 to (V _{CC} – 0.4)	–	–	0.2 * V _{CC}	V
V _{OHL}	I/O V _L Output HIGH Voltage	I/O V _L Source Current = 20 μA	1.3 to 4.5	0.9 to (V _{CC} – 0.4)	0.8 * V _L	–	–	V
V _{OLL}	I/O V _L Output LOW Voltage	I/O V _L Sink Current = 20 μA	1.3 to 4.5	0.9 to (V _{CC} – 0.4)	–	–	0.2 * V _L	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- Normal test conditions are V_{EN} = 0 V, C_{IOVCC} = 15 pF and C_{IOVL} = 15 pF, unless otherwise specified.
- V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 4.5 V under normal operating conditions.
- V_L is the supply voltage associated with the low voltage port. V_L must be less than or equal to (V_{CC} – 0.4) V during normal operation. However, during startup and shutdown conditions, V_L can be greater than (V_{CC} – 0.4) V.
- Typical values are for V_{CC} = +2.8 V, V_L = +1.8 V and T_A = +25°C. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

POWER CONSUMPTION

Symbol	Parameter	Test Conditions (Note 6)	V _{CC} (V) (Note 7)	V _L (V) (Note 8)	-40°C to +85°C			Unit
					Min	Typ	Max	
I _{Q-VCC}	Supply Current from V _{CC}	EN = V _L ; I/O V _{CCn} = 0 V, I/O V _{Ln} = 0 V, I/O V _{CCn} = V _{CC} or I/O V _{Ln} = V _L and I _o = 0	1.3 to 3.6	0.9 to (V _{CC} – 0.4)	–	–	1.0	μA
I _{Q-VL}	Supply Current from V _L	EN = V _L ; I/O V _{CCn} = 0 V, I/O V _{Ln} = 0 V, I/O V _{CCn} = V _{CC} or I/O V _{Ln} = V _L and I _o = 0	1.3 to 3.6	0.9 to (V _{CC} – 0.4)	–	–	1.0	μA
		EN = V _L ; I/O V _{CCn} = 0 V, I/O V _{Ln} = 0 V, I/O V _{CCn} = V _{CC} or I/O V _{Ln} = (V _{CC} – 0.2 V) and I _o = 0		< (V _{CC} – 0.2)	–	–	2.0	
I _{TS-VCC}	V _{CC} Tristate Output Mode Supply Current	EN = 0 V	1.3 to 3.6	0.9 to (V _{CC} – 0.4)	–	–	1.0	μA
I _{TS-VL}	V _L Tristate Output Mode Supply Current	EN = 0 V	1.3 to 3.6	0.9 to (V _{CC} – 0.4)	–	–	0.2	μA
		EN = 0 V		V _{CC} – 0.2	–	–	2.0	
I _{OZ}	I/O Tristate Output Mode Leakage Current	EN = 0 V	1.3 to 3.6	0.9 to (V _{CC} – 0.4)	–	–	0.15	μA
		EN = 0 V		V _{CC} – 0.2	–	–	2.0	
I _{EN}	Output Enable Pin Input Current	–	1.3 to 3.6	0.9 to (V _{CC} – 0.4)	–	–	1.0	μA

- Normal test conditions are V_{EN} = 0 V, C_{IOVCC} = 15 pF and C_{IOVL} = 15 pF, unless otherwise specified.

7. V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 4.5 V under normal operating conditions.

- V_L is the supply voltage associated with the low voltage port. V_L must be less than or equal to (V_{CC} – 0.4) V during normal operation. However, during startup and shutdown conditions, V_L can be greater than (V_{CC} – 0.4) V.

TIMING CHARACTERISTICS

Symbol	Parameter	Test Conditions (Note 9)	V _{CC} (V) (Note 10)	V _L (V) (Note 11)	-40°C to +85°C			Unit
					Min	Typ (Note 12)	Max	
t _{R-VCC}	I/O V _{CC} Rise Time (Output = I/O_V _{CC})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.7	2.4	ns
t _{F-VCC}	I/O V _{CC} Falltime (Output = I/O_V _{CC})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.5	1.0	ns
t _{R-VL}	I/O V _L Risetime (Output = I/O_V _L)	C _{IOV_L} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		1.0	3.8	ns
t _{F-VL}	I/O V _L Falltime (Output = I/O_V _L)	C _{IOV_L} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.6	1.2	ns
Z _{O-VCC}	I/O V _{CC} One-Shot Output Impedance		1.3 to 4.5	0.9 to (V _{CC} – 0.4)		30		Ω
Z _{O-VL}	I/O V _L One-Shot Output Impedance		1.3 to 4.5	0.9 to (V _{CC} – 0.4)		30		Ω
t _{PD_VL-VCC}	Propagation Delay (Output = I/O_V _{CC} , t _{PHL} , t _{PLH})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		4.5	9.3	ns
t _{PD_VCC-VL}	Propagation Delay (Output = I/O_V _L , t _{PHL} , t _{PLH})	C _{IOV_L} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		3.0	6.5	ns
t _{SK_VL-VCC}	Channel-to-Channel Skew (Output = I/O_V _{CC})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.2	0.3	nS
t _{SK_VCC-VL}	Channel-to-Channel Skew (Output = I/O_V _L)	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.2	0.3	nS
	Maximum Data Rate	(Output = I/O_V _{CC} , C _{IOVCC} = 15 pF) (Output = I/O_V _L , C _{IOV_L} = 15 pF)	1.3 to 4.5 > 2.2	0.9 to (V _{CC} – 0.4) > 1.8	110 140			Mb/s

9. Normal test conditions are V_{EN} = 0 V, C_{IOVCC} = 15 pF and C_{IOV_L} = 15 pF, unless otherwise specified.

10. V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 4.5 V under normal operating conditions.

11. V_L is the supply voltage associated with the low voltage port. V_L must be less than or equal to (V_{CC} – 0.4) V during normal operation. However, during startup and shutdown conditions, V_L can be greater than (V_{CC} – 0.4) V.

12. Typical values are for V_{CC} = +2.8 V, V_L = +1.8 V and T_A = +25°C. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

ENABLE / DISABLE TIME MEASUREMENTS

Symbol	Parameter	Test Conditions (Note 13)	V _{CC} (V) (Note 14)	V _L (V) (Note 15)	-40°C to +85°C			Unit
					Min	Typ (Note 16)	Max	
t _{EN-VCC}	Turn-On Enable Time (Output = I/O ₊ V _{CC} , t _{pZH})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		130	180	ns
	Turn-On Enable Time (Output = I/O ₊ V _{CC} , t _{pZL})	C _{IOVL} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		100	150	ns
t _{EN-VL}	Turn-On Enable Time (Output = I/O ₊ V _L , t _{pZH})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		95	185	ns
	Turn-On Enable Time (Output = I/O ₊ V _L , t _{pZL})	C _{IOVL} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		70	110	ns
t _{DIS-VCC}	Turn-Off Disable Time (Output = I/O ₊ V _{CC} , t _{pHZ})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		175	250	ns
	Propagation Delay (Output = I/O ₊ V _{CC} , t _{PLZ})	C _{IOVL} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		150	190	ns
t _{DIS-VL}	Turn-Off Disable Time (Output = I/O ₊ V _L , t _{pHZ})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		180	250	ns
	Propagation Delay (Output = I/O ₊ V _L , t _{PLZ})	C _{IOVL} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		160	220	ns

13. Normal test conditions are V_{EN} = 0 V, C_{IOVCC} = 15 pF and C_{IOVL} = 15 pF, unless otherwise specified.

14. V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 4.5 V under normal operating conditions.

15. V_L is the supply voltage associated with the low voltage port. V_L must be less than or equal to (V_{CC} – 0.4) V during normal operation. However, during startup and shutdown conditions, V_L can be greater than (V_{CC} – 0.4) V.

16. Typical values are for V_{CC} = +2.8 V, V_L = +1.8 V and T_A = +25 °C. All units are production tested at T_A = +25 °C. Limits over the operating temperature range are guaranteed by design.

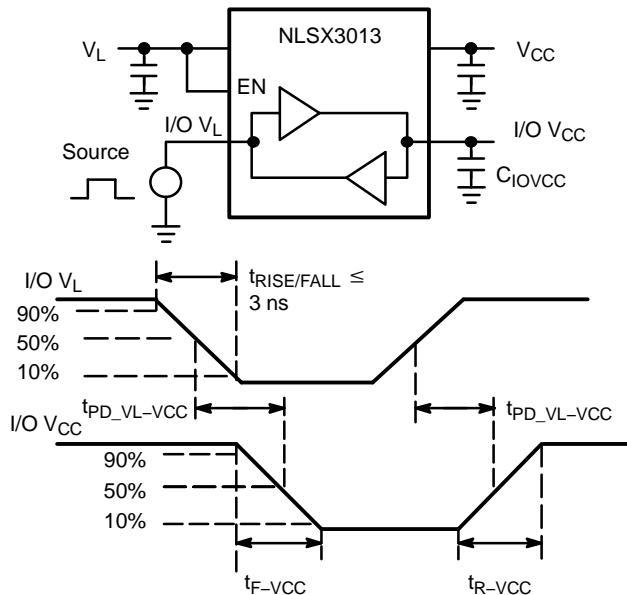


Figure 4. Driving I/O VL Test Circuit and Timing

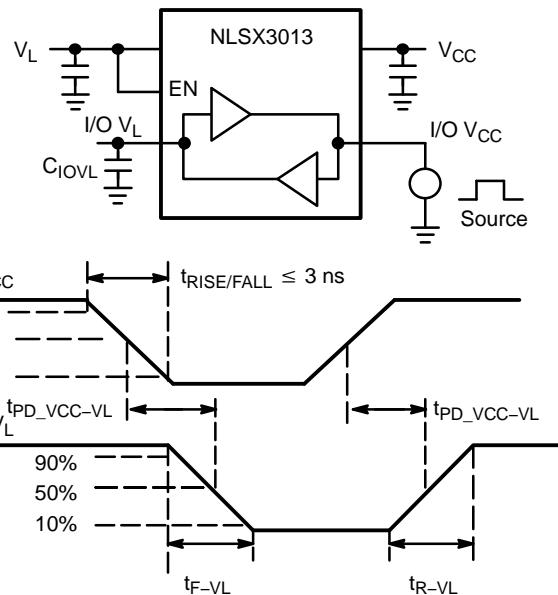
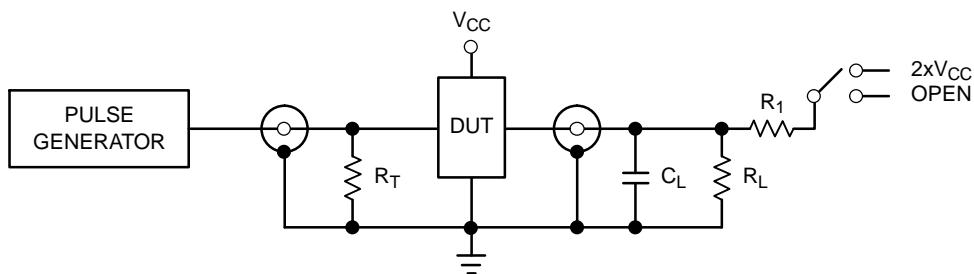



Figure 5. Driving I/O VCC Test Circuit and Timing

NLSX3013

Test	Switch
t_{PZH}, t_{PHZ}	Open
t_{PZL}, t_{PLZ}	$2 \times V_{CC}$

$C_L = 15 \text{ pF}$ or equivalent (Includes jig and probe capacitance)
 $R_L = R_1 = 50 \text{ k}\Omega$ or equivalent
 $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

Figure 6. Test Circuit for Enable/Disable Time Measurement

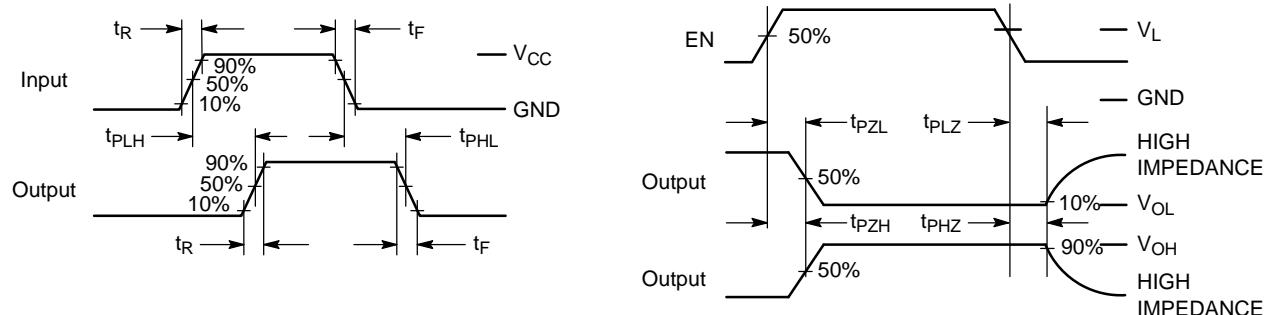


Figure 7. Timing Definitions for Propagation Delays and Enable/Disable Measurement

IMPORTANT APPLICATIONS INFORMATION

Level Translator Architecture

The NLSX3013 auto sense translator provides bi-directional voltage level shifting to transfer data in multiple supply voltage systems. This device has two supply voltages, V_L and V_{CC} , which set the logic levels on the input and output sides of the translator. When used to transfer data from the V_L to the V_{CC} ports, input signals referenced to the V_L supply are translated to output signals with a logic level matched to V_{CC} . In a similar manner, the V_{CC} to V_L translation shifts input signals with a logic level compatible to V_{CC} to an output signal matched to V_L .

The NLSX3013 consists of four bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. The one-shot circuits are used to detect the rising or falling input signals. In addition, the one shots decrease the rise and fall time of the output signal for high-to-low and low-to-high transitions.

Input Driver Requirements

Auto sense translators such as the NLSX3013 have a wide bandwidth, but a relatively small DC output current rating. The high bandwidth of the bi-directional I/O circuit is used to quickly transform from an input to an output driver and vice versa. The I/O ports have a modest DC current output specification so that the output driver can be over driven when data is sent to in the opposite direction.

For proper operation, the input driver to the auto sense translator should be capable of driving 20 mA of peak output current with an output impedance less than 25 Ω . The bi-directional configuration of the translator results in both input stages being active for a very short time period. Although the peak current from the input signal circuit is relatively large, the average current is small and consistent with a standard CMOS input stage.

Output Load Requirements

The NLSX3013 is designed to drive CMOS inputs. Resistive pullup or pulldown loads of less than 50 k Ω should not be used with this device. The NLSX3373 or NLSX3378 open-drain auto sense translators are alternate translator options for an application such as the I²C bus that requires pullup resistors.

ORDERING INFORMATION

Device	Package	Shipping [†]
NLSX3013FCT1G	20 Pin Flip-Chip (Pb-Free)	3000 / Tape & Reel
NLSX3013BFCT1G	20 Pin Flip-Chip (Backside Laminate Coating) (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Enable Input (EN)

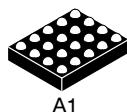
The NLSX3013 has an Enable pin (EN) that provides tri-state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O V_{CC} and I/O V_L pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the V_L supply and has Over-Voltage Tolerant (OVT) protection.

Uni-Directional versus Bi-Directional Translation

The NLSX3013 can function as a non-inverting uni-directional translator. One advantage of using the translator as a uni-directional device is that each I/O pin can be configured as either an input or output. The configurable input or output feature is especially useful in applications such as SPI that use multiple uni-directional I/O lines to send data to and from a device. The flexible I/O port of the auto sense translator simplifies the trace connections on the PCB.

Power Supply Guidelines

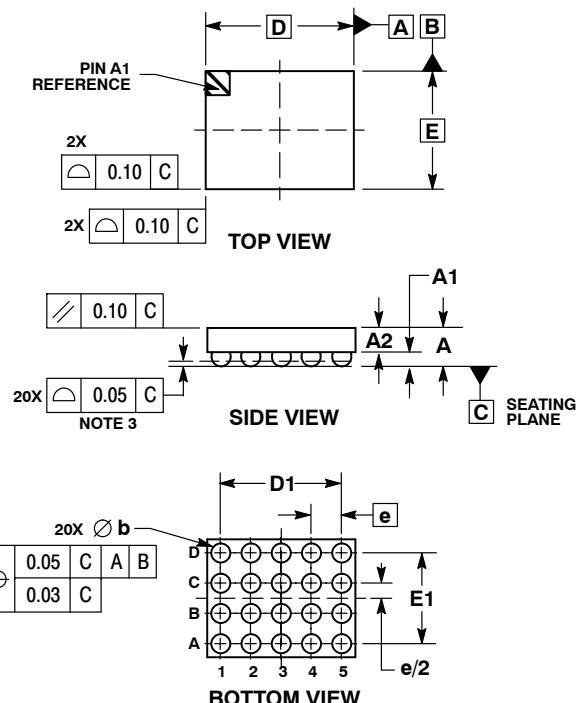
During normal operation, supply voltage V_L should be less than or equal to V_{CC} . The sequencing of the power supplies will not damage the device during the power up operation.


The enable pin should be used to enter the low current tri-state mode, rather than setting either the V_L or V_{CC} supplies to 0 V. The NLSX3013 will not be damaged if either V_L or V_{CC} is equal to 0 V while the other supply voltage is at a nominal operating value; however, the operation of the translator cannot be guaranteed during single supply operation.

For optimal performance, 0.01 to 0.1 μ F decoupling capacitors should be used on the V_L and V_{CC} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the power supply voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS


ON Semiconductor®

SCALE 4:1

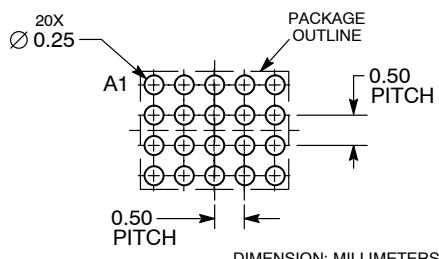
20 PIN FLIP-CHIP, 2.54x2.03, 0.5P CASE 766AK-01 ISSUE A

DATE 16 JUL 2010

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

MILLIMETERS		
DIM	MIN	MAX
A	---	0.66
A1	0.21	0.27
A2	0.33	0.39
b	0.29	0.34
D	2.54 BSC	
D1	2.00 BSC	
E	2.03 BSC	
E1	1.50 BSC	
e	0.50 BSC	


GENERIC MARKING DIAGRAM*

XXXXXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week
■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON23416D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	20 PIN FLIP-CHIP, 2.54 X 2.03, 0.5P	PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:

Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[onsemi](#):

[NLSX3013FCT1G](#) [NLSX3013BFCT1G](#)