%118
2014 5 11 A

AU IR T B Al
Machinery Design & Manufacture

S AHLF F B % Gedi b R A AR

KWFLEAIL BT
(1LEEA PURTRE, L5 100084;2. 8 FRHERY YU F IR0, )il A& 611731)

B OE. LA RGEREEN(S)LAE AR E, RO IR IR R AR AR A S RE S E
A%, 4 THERR AN, AL BT LN B AN EERAAE., RALRZ-WIREHRBA AT
L E R AR fk, 5t $381E S0 H B A R B AMATER s KRB R G ARG A B B AU B
REBIE LR AR LR AGEHBAKGET S AT, FASRAN RAEERSELE, TURMFLR
BT EE AN MAR; RARHEAR G X REFAS A S B SiEE SR B AR BEH A
KT T ME SR IR H 383 R R RS SRR T,

X®iF . FHEH;PID BE; BEEX; BiR;NSGA-

hMESHS THI6TP27  CEERIAE:A  XEHS:1001-3997(2014)11-0001-04
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Abstract: With the rapid development of industry, dual/multi—-motor control has been applied extensively. In order to achieve
excellent performance , it is necessary to study the tuning of the multi-channellcontroller parameters, which is typically used
in dual coaxial drive motor system. It modeled the system with single spring and double inertia blocks. And using traditional
genetic algorithm, the control parameters of the multi—~channel/controller system were tuned. Then considering the overall
performance of system, a method to tune conirol parameters has been proposed using Non-Dominated Sorting Genetic
Algorithm-II ( NSGA-II ) for multi-objective system. Simulations show that the method to tune dual-channel together can
accomplish better performance than that of single —channel separately. Besides, it also illustrates that the application of
NSGA-II allows dual-motor synchronous drive system the satisfying dynamic and synchronization performance in the case of

tuning for the multi-objective and multi—channel/ controller system.
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Fig.1 Structure of Human Centrifuge Basket
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Fig.2 Block Diagram of System
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Fig.5 Step Response of Tuning with Single—Channel Separately
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