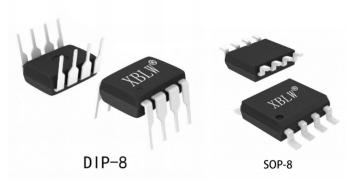


Product Specification

XBLW LM393

Dual Comparators



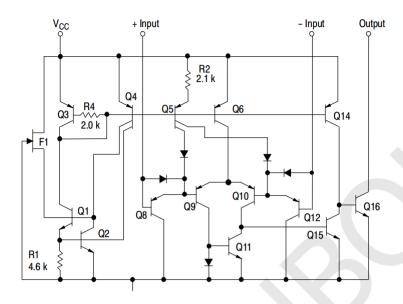
Descriptions

The LM393 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage. It is mainly used in consumer and industrial electronic products. It is available in DIP-8 or SOP-8 package form.

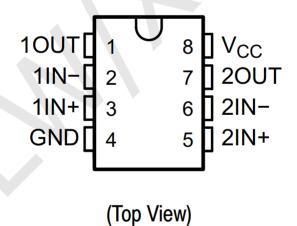
Feature

- Wide Supply Voltage Range Single Supplies: 2.0V to 36V Dual Supplies: ±1.0V to ±18V
- Very Low Supply Current Drain (0.8mA)—Independent Of Supply Voltage
- Low Input Biasing Current:25 nA
- Low Input Offset Current:5.0 nA
- Maximum Offset Voltage:5.0mV
- Input Differential Voltage Range Is Same With Supply Voltage Range
- Compatible With TTL,DTL,ECL,MOS and CMOS

Applications


- Vacuum robot
- Single phase UPS
- Server PSU
- Cordless power tool
- Wireless infrastructure
- Applicances
- Building automation
- Factory automation & control
- Motor drives
- Infotainment & cluster

Ordering Information


Product Model	Package Type	Marking	Packing	Packing Qty
XBLW LM393N	DIP-8	LM393N	Tube	2000pcs/Box
XBLW LM393DTR	SOP-8	LM393	Tape	2500pcs/Reel

Scematic Diagram

Pin Diagram

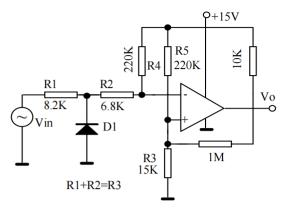
Pins Configurations

No.	Description	Symbol	No.	Description	Symbol
1	OUTPUT 1	OUT1	5	NONINVERTING INPUT 2	IN2+
2	INVERTING INPUT 1	IN1-	6	INVERTING INPUT 2	IN2-
3	NONINVERTING INPUT 1	IN1+	7	OUTPUT 2	OUT2
4	GROUND	GND	8	POWER SUPPLY	Vcc

Absolute Maximum Ratings

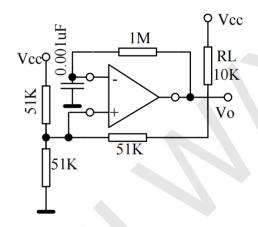
TA=25℃,unless otherwise noted

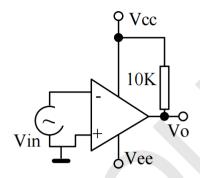
Parameter		Symbol	Va	Unit	
		Symbol	Min.	Max.	Unit
Supply Voltage	Dual	Vcc		± 18	\/
	Single	VCC		36	V
Differential Input Voltage		V _{IDR}		36	V
Input Common Mode Voltage Range		V _{ICR}	-0.3	36	V
Output Leakage Current		log		20	mA
Maximum Operation Junction Temperature		T _{J(MAX)}		125	°C
Power Dissipation		P _D		570	mW
Operation Temperat	Operation Temperature		0	70	$^{\circ}$ C
Storage Temperature		Tstg	-65	150	°C


Electrical Characteristics

TA=25°C,Vcc=5V, unless otherwise noted

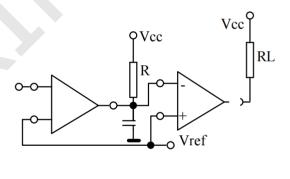
	4			Value			
Charateristics	Test Conditions	Symbol	Min.	Тур.	Max.	Unit	
	Ta=25°C			2	5		
Input Offset Voltage	0°C = Ta ≤70°C	Vio			9	mV	
	Ta=25°C			5	50		
Input Offset Current	0°C ≤Ta ≤70°C	IIO			150	nA	
	Ta=25°C			25	250		
Input Bias Current	0°C ≤ Ta ≤70°C	I IB			400	nA	
Input Common Mode Voltage	Ta=25°C		0		Vcc-1.5		
Range	0°C ≤ Ta ≤70°C	VICR	0		Vcc-2.0	V	
	R∟=∞ Dual Comparator			0.4	1.0		
Supply Current	R _L =∞ Dual Comparator, Vcc=30V	Icc			2.5	mA	
Voltage Gain	$R_L > 15K\Omega$, $Vcc=15V$	Gv	50	200		V/ mV	
Large Signal Response Time	V_{IN} =TTL Logic Swing , V_{REF} =1.4 V , V_{RL} =5.0 V , R_{L} =5.1 $K\Omega$	tres		300		ns	
Response Time	V _{RL} =5.0V, R _L =5.1KΩ	tres		1.3		us	
Input Differential Voltage		VID			Vcc	V	
Output Sink Current	$V_{IN(-)} \geqslant 1.0V, V_{IN(+)} = 0V, V_0 \leqslant 1.5V$	Isink	6.0	16		mA	
	$V_{IN(-)}\geqslant 1.0V, V_{IN(+)}=0V, I_{SINK}\leqslant 4.0mA$			150	400	.,	
Output Saturation Voltage	$V_{IN(-)} \geqslant 1.0V$, $V_{IN(+)} = 0V$, Isink ≤ 4.0 mA 0 °C = Ta ≤ 70 °C	V SAT			700	mV	
	$V_{IN(+)} \geqslant 1.0V$, $V_{IN(-)} = 0V$, $V_0 = 5.0V$			0.1			
Output Leakage Current	$V_{IN(+)} \geqslant 1.0V$, $V_{IN(-)} = 0V$, $V_{O} = 30V$ $0^{\circ}C \leqslant Ta \leqslant 70^{\circ}C$	IoL			1000	nA	


Applications


D1 prevents input from going negative by more than 0.6 V.

$$R1 + R2 = R3$$

$$R3 \leq \frac{R5}{10} \ \ \text{for small error in zero crossing}.$$


Zero Crossing Detector (Single Supply)

Square wave oscillator

Zero Crossing Detector (Split Supply)

Time Delay Generator

Package Information

• DIP-8

Size	Dimensions In	Millimeters	Size	Dimension	s In Inches
Symbol	Min(mm)	Max (mm)	Symbol	Min(in)	Max(in)
A	3. 710	4. 310	A	0. 146	0. 170
A1	0. 510	1. 010	A1	0. 020	0.1.0
A2	3. 200	3. 600	A2	0. 126	0. 142
В	0.380	0.570	В	0. 015	0. 022
	1. 524			0.015	60 (BSC)
B1	1, 524	(BSC)	B1		
С	0. 204	0.360	С	0.008	0.014
D	9. 000	9.400	D	0. 354	0. 370
Е	6. 200	6.600	Е	0. 244	0. 260
E1	7. 320	7.920	E1	0. 288	0. 312
е	2. 540	(BSC)	е	0.1	00 (BSC)
L	3.000	3.600	L	0. 118	0.142
E2	8. 400	9.000	E2	0. 331	0.354
7	BI B	e	VI VI	E2	
	D D				

• SOP-8

ymbol Size	Dimensions In Millimeters		Size	Dimensions In Inches		
	Min(mm)	Max (mm)	Symbol	Min(in)	Max(in)	
A	1. 350	1.750	A	0. 053	0.069	
A1	0. 100	0. 250	A1	0.004	0.010	
A2	1. 350	1.550	A2	0.053	0.061	
b	0.330	0.510	b	0.013	0.020	
С	0. 170	0. 250	С	0.006	0.010	
D	4. 700	5.100	D	0. 185	0. 200	
Е	3. 800	4.000	Е	0. 150	0. 157	
E1	5.800	6. 200	E1	0. 228	0. 224	
е	1. 27	O (BSC)	е	0. (050 (BSC)	
L	0.400	1.270 8°	L	0.016	0. 050 8°	
θ	0°	8°	θ	0°	8°	
; [3]	b	e		C		
	V V		Ī			

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.