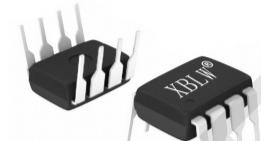


Product Specification

XBLW UA741

General-purpose Operational Amplifiers

WEB | www.xinboleic.com


Description

The UA741 is a general-purpose operational amplifiers.

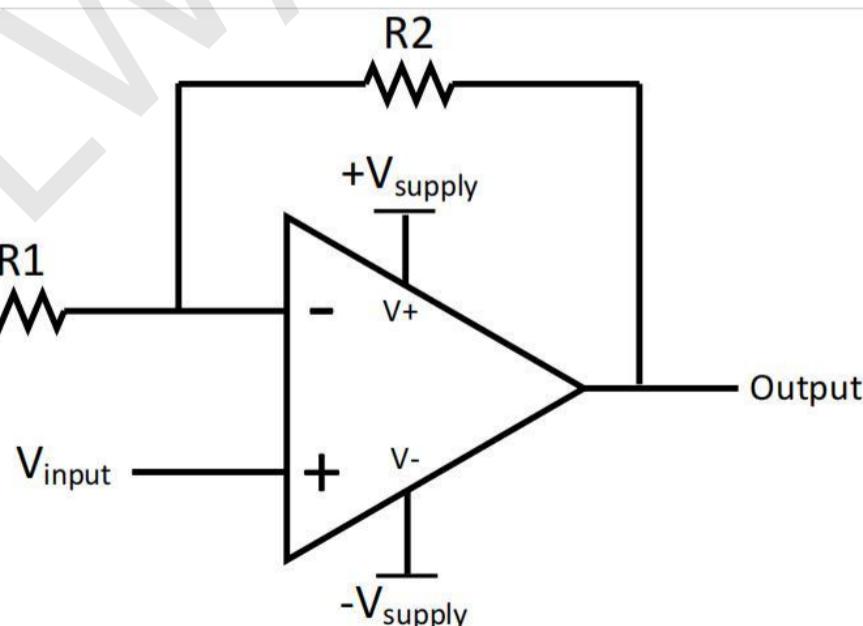
The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common-mode range is exceeded, as well as freedom from oscillations.

Features

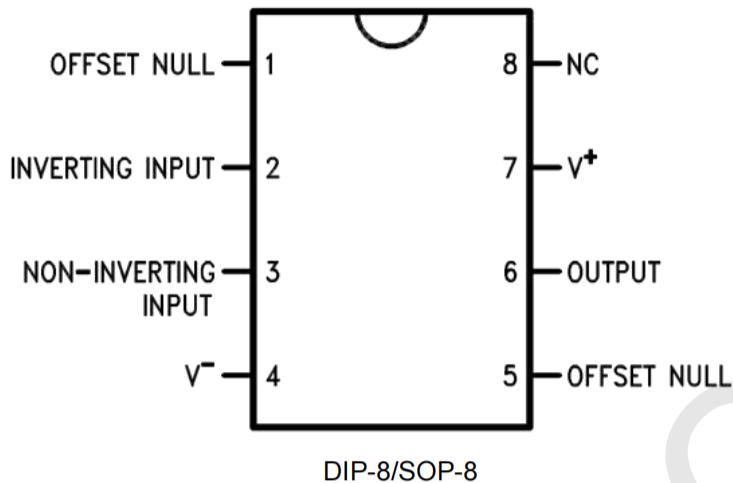
- Overload Protection on the Input and Output
- No Latch-Up When the Common-Mode Range is Exceeded

DIP-8

SOP-8


Apply

- Comparators
- Multivibrators
- DC Amplifiers
- Summing Amplifiers
- Integrator or Differentiators
- Active Filters


Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW UA741CP	DIP-8	UA741CP	Tube	2000pcs/Box
XBLW UA741CDTR	SOP-8	UA741C	Tape	2500pcs/Reel

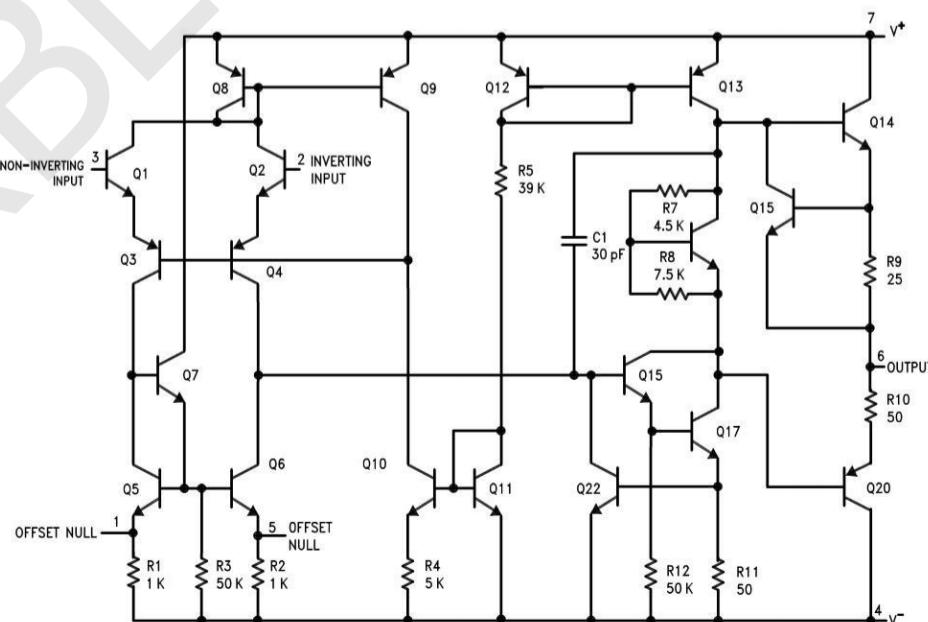
Typical Applications

Pin Configuration and Functions

Pin		I/O	Description
Name	No.		
INVERTING INPUT	2	I	Inverting signal input
NC	8	N/A	No Connect, should be left floating
NONINVERTING INPUT	3	I	Noninverting signal input
OFFSET NULL	1,5	I	Offset null pin used to eliminate the offset voltage and balance the input voltages.
OFFSET NULL			
OUTPUT	6	O	Amplified signal output
V+	7	I	Positive supply voltage
V-	4	I	Negative supply voltage

Absolute Maximum rating

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾⁽³⁾


		Min	Max	Unit
Supply voltage			± 22	V
Power dissipation			500	mW
Differential input voltage			± 30	V
Input voltage			± 15	V
Output short circuit duration		Continuous		
Operating temperature		0	70	°C
Junction temperature			150	°C
Soldering information	DIP package (10 seconds)		260	°C
Storage temperature, T _{stg}		-65	150	°C

Electrical characteristics

Unless otherwise specified, these specifications apply for $V_S = \pm 15 V$

Parameter	Test Conditions	Min	Typ	Max	Unit
Input offset voltage	$R_S \leq 10 K\Omega$	$T_A = 25^\circ C$	2	6	mV
		$T_{A\text{MIN}} \leq T_A \leq T_{A\text{MAX}}$		7.5	mV
Input offset voltage adjustment range	$T_A = 25^\circ C, V_S = \pm 20 V$		± 15		mV
Input offset current	$T_A = 25^\circ C$		20	200	nA
				300	
Input bias current	$T_A = 25^\circ C$		80	500	nA
				0.8	μA
Input resistance	$T_A = 25^\circ C, V_S = \pm 20 V$	0.3	2		$M\Omega$
Input voltage range	$T_A = 25^\circ C$	± 12	± 13		V
Large signal voltage gain	$V_S = \pm 15 V, V_O = \pm 10 V, R_L \geq 2 K\Omega$	$T_A = 25^\circ C$	20	200	V/mV
		$T_{A\text{MIN}} \leq T_A \leq T_{A\text{MAX}}$	15		
Output voltage swing	$V_S = \pm 15 V$	$R_L \geq 10 K\Omega$	± 12	± 14	V
		$R_L \geq 2 K\Omega$	± 10	± 13	
Output short circuit current	$T_A = 25^\circ C$		25		mA
Common-mode rejection ratio	$R_S \leq 10 K\Omega, V_{CM} = \pm 12 V, T_{A\text{MIN}} \leq T_A \leq T_{A\text{MAX}}$	70	90		dB
Supply voltage rejection ratio	$V_S = \pm 20 V$ to $V_S = \pm 5 V, R_S \leq 10 \Omega, T_{A\text{MIN}} \leq T_A \leq T_{A\text{MAX}}$	77	96		dB
Transient response	$T_A = 25^\circ C, \text{unity gain}$		0.3		μs
			5%		
Slew rate	$T_A = 25^\circ C, \text{unity gain}$		0.5		$V/\mu s$
Supply current	$T_A = 25^\circ C$		1.7	2.8	mA
Power consumption	$V_S = \pm 15 V, T_A = 25^\circ C$		50	85	mW

Functional Block Diagram

Feature Description

Overload Protection

The UA741 features overload protection circuitry on the input and output. This prevents possible circuit damage to the device.

Latch-up Prevention

The UA741 is designed so that there is no latch-up occurrence when the common-mode range is exceeded. This allows the device to function properly without having to power cycle the device.

Typical Application

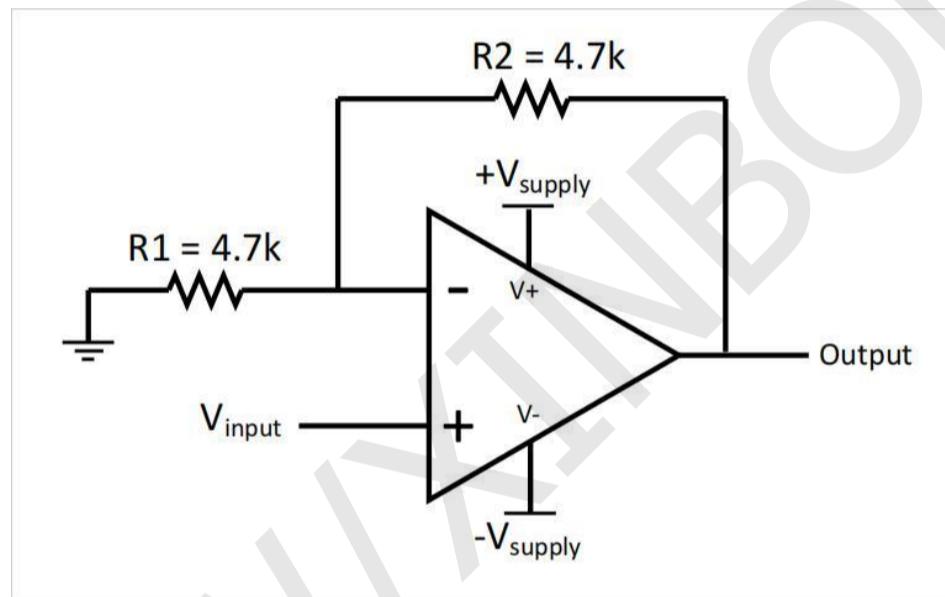


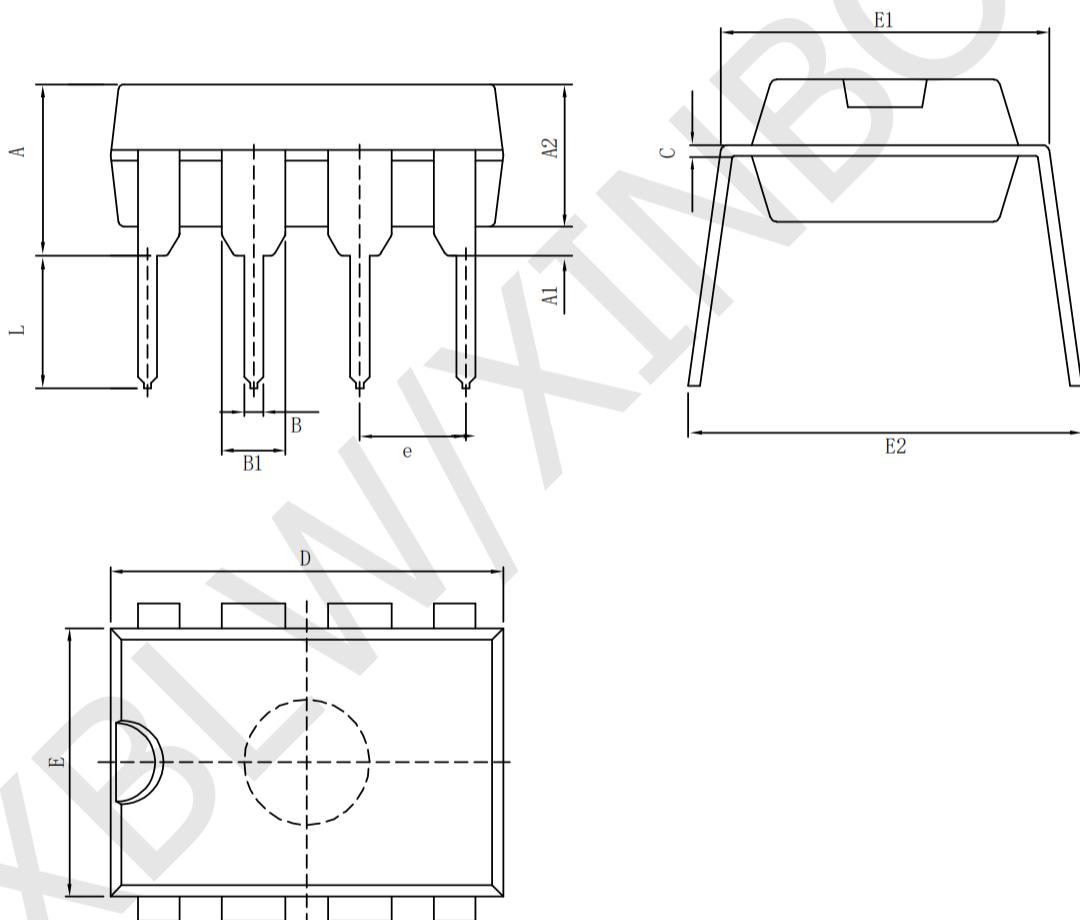
Figure 1. UA741 Noninverting Amplifier Circuit

Design Requirements

As shown in Figure 1, the signal is applied to the noninverting input of the UA741. The gain of the system is determined by the feedback resistor and input resistor connected to the inverting input. The gain can be calculated by Equation 1:

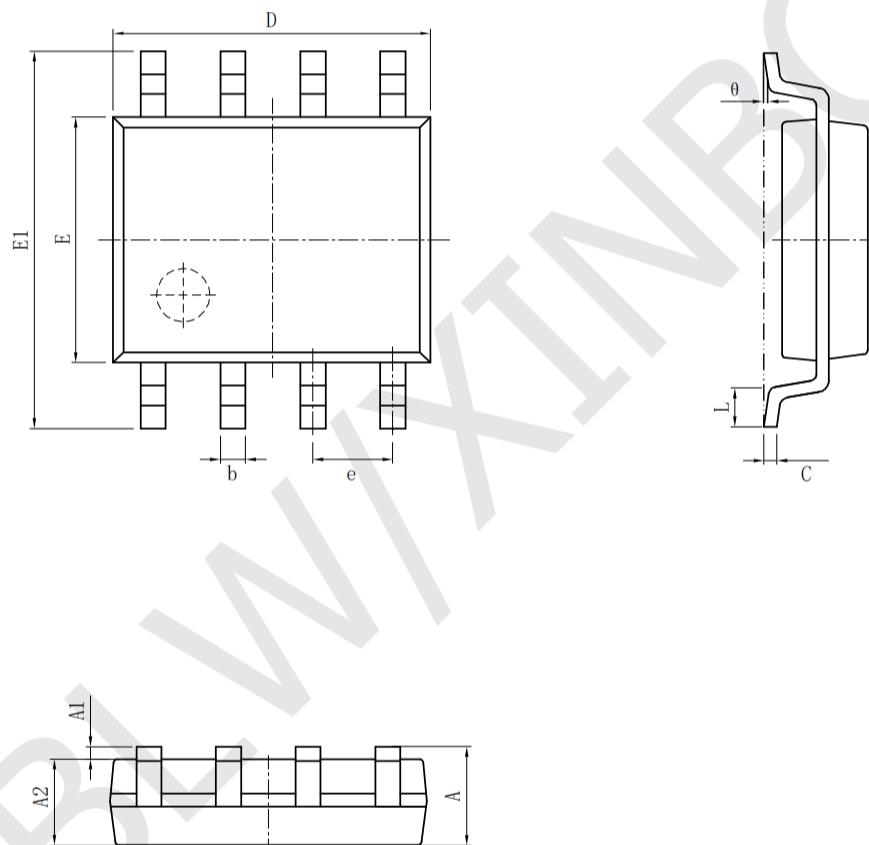
$$\text{Gain} = 1 + (R2/R1)$$

(1) The gain is set to 2 for this application. R1 and R2 are 4.7-k resistors with 5% tolerance.


Detailed Design Procedure

The UA741 can be operated in either single supply or dual supply. This application is configured for dual supply with the supply rails at ± 15 V. The input signal is connected to a function generator. A 1-Vpp, 10-kHz sine wave was used as the signal input. 5% tolerance resistors were used, but if the application requires an accurate gain response, use 1% tolerance resistors.

Package Outline Dimensions


- DIP-8

Symbol	Dimensions In Millimeters		Symbol	Dimensions In Inches	
	Min (mm)	Max (mm)		Min (in)	Max (in)
A	3.710	4.310	A	0.146	0.170
A1	0.510		A1	0.020	
A2	3.200	3.600	A2	0.126	0.142
B	0.380	0.570	B	0.015	0.022
B1	1.524 (BSC)		B1	0.060 (BSC)	
C	0.204	0.360	C	0.008	0.014
D	9.000	9.400	D	0.354	0.370
E	6.200	6.600	E	0.244	0.260
E1	7.320	7.920	E1	0.288	0.312
e	2.540 (BSC)		e	0.100 (BSC)	
L	3.000	3.600	L	0.118	0.142
E2	8.400	9.000	E2	0.331	0.354

• SOP-8

Symbol	Dimensions In Millimeters		Symbol	Dimensions In Inches	
	Min (mm)	Max (mm)		Min (in)	Max (in)
A	1.350	1.750	A	0.053	0.069
A1	0.100	0.250	A1	0.004	0.010
A2	1.350	1.550	A2	0.053	0.061
b	0.330	0.510	b	0.013	0.020
c	0.170	0.250	c	0.006	0.010
D	4.700	5.100	D	0.185	0.200
E	3.800	4.000	E	0.150	0.157
E1	5.800	6.200	E1	0.228	0.224
e	1.270 (BSC)		e	0.050 (BSC)	
L	0.400	1.270	L	0.016	0.050
θ	0°	8°	θ	0°	8°

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products are not licensed for life support, military, aerospace and other applications, and XBLW will not be responsible for the consequences of the use of products in these fields.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.