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0 引 言

永磁同步电机在现代电力控制系统中得到广泛的

应用，其具有可靠性和稳定性好，发电输出增益较大和

抗干扰能力较强的优点。永磁同步电机通过超导电子

进行同步控制发电，电机输出的功率较大，需要进行可

靠性控制设计[1]。永磁同步电机的控制和设计包含多参

量约束和多模控制的目标优化问题，永磁同步电机控制

模型是一种多变量、非线性的时滞控制系统，文献[2⁃3]
提出具有确定性分叉性边界优化的控制方法，采用梯度

优化算法进行模糊 PID控制，控制目标的约束参量取决

于永磁体的特性、电机性能，增加电动势的平均值，但忽

略了电机的速度要求。本文在电机 PID控制的基础上

进行优化设计，采用改进的粒子群算法进行训练优化，

以及控制方法优化设计。

1 永磁同步电机的控制参量模型

本文研究的永磁同步电机的结构模型如图 1所
示。通过对电机的损耗、电机体积/重量等方面的优化

设计，减少漏磁和漏磁电感对电机在动态工况下的影

响，提高电磁的输出转矩和功率[4]。

永磁同步电机系统主要由电磁耦合器的偶极子进

行线圈序列的定位和电磁耦合实现交流振荡控制，建立

无槽无刷直流电机控制的几何参数模型，本文中，优化

控制的参数包括：最大电磁转矩数 P，耦合器的极弧系

数 β，磁场有效电流值 lm，电机的永磁体转子/定子轭厚

度 ly，绕组厚度 lw，气真空磁导率 lg，漏磁系数 k1，转子半

径 rr，气隙的磁阻密度 Jcu，永磁体磁场 ls，定/转子轴向长
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度（通常用细长比 λ = db ls 表示，其中 db = 2(rr + lg )）。

图 1 永磁同步电机控制参量分布示意图

选择电压、转矩、速度和电磁损耗作为控制约束参

量，依据洛伦兹法则得到无槽无刷直流电机磁极厚度为

l，在磁场密度为 B 的磁场通过功率反馈自适应调制，得

到输出电流 I 时，漏磁系数为 f = Il × B。在扰动误差干

扰下，电机的传输效率为：
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通过对电磁耦合增益的调整，在距离电机电磁绕组

旋转中心为 r 处的转矩为 T = NILBr。令 l = ls，r = rr + lg，

NI = AwJcu kf，再计算直流电机的电磁耦合增益，得到 B，

就可以得到图 1中永磁同步电机的电磁转矩。其中 kf

是补偿电容常数，Aw 为电容输出终端绕组截面积，定义

为 Aw = πlw (2rr + 2lg + lw) 。线圈的电压增益为：

NI = πlw (2rr + 2l + lw)Jcu kf kc （2）
式中：kc 是电机的线圈转动惯量，转矩输出为 10 N·m，
那么线圈与总线圈之比为 kc = 2 3 。

忽略目标电流特征和定/转子铁芯磁阻的扰动性约

束因素，得到永磁同步电机的磁通密度为：

Bg = Fm

Ag ℜ （3）
式中：Fm 为永磁体形成的非正弦磁密；Ag 为绕组气隙

动势；ℜ 为电流输出放大增益。根据上述参量分析，得

到无槽无刷直流电机的控制参量模型为：

Fm = Br lm
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（4）
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式中：真空磁导率 μ0 = 4π × 10- 7 H/m；μr1 和 μr2 为每极

下气隙的磁阻及磁导率。

2 电机控制目标函数的构建

在进行控制约束参量模型构建的基础上，采用模糊

PID控制模型进行控制器设计，PID控制器是一个三层

神经网络结构 [5⁃6]，如图 2所示。分别为电机控制参量的

输入层、电机控制整流处理的中间层和电机控制功率输

出的输出层。

图 2 PID控制结构

PID神经网络控制器的输入节点的控制训练向量

模式为：

x(t) = (x0 (t),x1(t), ⋯ ,xk - 1(t))T （7）
基于模糊神经网络控制设计方法，得到永磁同步电

机 PID控制中隐含层 σj (φa, φ̇a) 表示前向神经元电机的

电磁耦合模值，采用适当的训练方法进行加权训练，对

电机控制的输出向量 x(t) 与连接权向量 ω j 进行自适应

跟踪训练，得到加权训练后的隐含层输出为：

dj =∑
i = 0

k - 1

(xi(t) - ωij (t))2，j = 0, 1, 2, ⋯ ,N - 1 （8）
式中 ω j = (ω0j ,ω1j , ⋯ ,ωk - 1, j )T 表示训练权重。本文采用粒

子群算法进行控制器训练，表示 PID控制器神经元 j 对

最大风能的利用权重：

w
j* (t + 1) = w

j* (t) + α(cj* )[x(t) - w
j* (t)] （9）

式中：j ∈( j* , NE
j* (t)) ，采用 PID神经网络控制，调节永磁

同步电机谐振角 ω0，输出功率为：
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得到永磁同步电机转速调节 PID控制的目标函

数为：

Y (s)
R(s) =

GC (s)G0 (s)e-τs

1 + GC (s)G0 (s) （11）
式中：Y (s) 为永磁同步电机前向 PID神经元输出控制参

数；R(s) 为输入 PID控制器积分神经元的控制参数；e-τs

为模糊修正补偿参数。
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3 基于改进粒子群算法的 PID控制优化

3.1 永磁同步电机转矩计算

在选择电压、转矩、速度和电磁损耗等参数进行控

制约束参量构建的基础上，进行控制目标函数设计，然

后采用改进的粒子群算法进行 PID控制的加权训练，实

现控制目标函数的最优化求解 [7]，结合电机的漏感和工

作频率，得到永磁无刷直流电机的电磁耦合器的定/转
子铁芯磁阻的关系式为：

ωLlp - 1
ωCp

= 0 ⇒ Cp = 1
ω2 Llp

（12）
ωLls - 1

ωCs

= 0 ⇒ Cs = 1
ω2 Lls

（13）
采用粒子群算法进行神经网络 PID训练，考虑全局

优化问题 min{ }f ( )x ，得到蚂蚁进行 PID隐含层加权训

练的更新公式如下：
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在迭代搜索过程中，蚂蚁个体根据个体最优和全局

最优来更新自己的速度和位置 [8]，考虑到漏磁系数 k1 和

粒子优化下的跨距系数 kβ，得到永磁同步电机转矩：

Tem =
πkf kck1kβ Br lm ls lw (2rr + 2lg + lw)Jcu

lnæ
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（16）

kβ =
α( β,kc)

kc

（17）
其中 α 为粒子个体之间的瞬间跨度，近似为：

α = min ( β,kc)[ ]ks + (1 - ks)tanh( )δ || β - kc （18）
式中：ks < 1；δ 为经验值。

3.2 PID控制律设计

根据计算的永磁同步电机转矩，在电磁损耗长度为

l 的磁场 B 中以粒子速度 v 移动，使用一组蚂蚁个体集

合在 D 维空间中搜索最优值，得到永磁同步电机 PID控

制的变异适应度值为：

Mdist Fg =∑
i = 1

N

dist(i,Fg ) N （19）
在粒子进化优化控制下，蚂蚁个体自身找到的最优

解则为电机的最优电磁损耗抑制点，此时产生的电压

E = vl × B。令 v = rωr，r = rr + lg，B = kβ k1Bg，l = lskf kc Aw Ac，

则电机能量损耗的均方误差为：

E =
(rr + lg )kβ k1Bg ωr lskf kc Aw

Ac

（20）

式中：ωr 为电磁耦合器的偶极子旋转角速度；Ac 为磁

场强度随电磁耦合器分布的衰减系数。

电机输出的电流可以表示为：I = AcJcu，PID控制器

的反射阻抗为：V = E + RI，其中 R 为电机的励磁绕组，通

过粒子优化控制，得到永磁同步电机的电压增益输出为：

V =
lskf kc Aw

Ac
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式中：ρ 为绕组的电感和电阻的传输比特率；ket = 1 +

πγ(rr + lg + lw) ( pls) 。可以计算出永磁同步电机的附加

涡流损耗状态控制方程为：
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其中：

A23 =
-M 2

P L
2 g
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（23）
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M 2
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（24）
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在粒子优化下进行 PID控制的自适应加权，通过

Steinmetz常数可以建立永磁同步电机转矩 C 和控制电

压 U 的关系为：

C = Km (U - Keθ̇P ) （28）
式中：Km，Ke 为最大电磁转矩、转速。计算各蚂蚁个体

权值为：

w͂i
k = w͂i

k - 1

p(zk x͂i
k) p( x͂i

k xi
k - 1)

q( x͂i
k xi

k - 1)
（29）

将式（29）代入永磁同步电机控制目标函数方程，得

到优化的 PID控制律为：

Bsy =
πk1 βBr lm

2ply lnæ
è
ç

ö

ø
÷

rr + lg + lw

rr - lm

（30）

加上计算得到的转矩和速度等参量信息 k′
h,n,k′

e，以
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及定子饱和磁密 ρy，可以得到电机控制的优化解为：

Ph = k′
h ρyVsy B

n
sy f （31）

Pe = k′
e ρyVsy B

n
sy f 2 （32）

由此实现了永磁同步电机 PID控制律优化设计，提

高了电机的输出功率增益。

4 电机控制测试实验分析

在进行永磁同步电机的 PID控制仿真实验中，给出

永磁同步电机的磁密在 1.3~2.5之间取值，转矩输出为

12 N·m，电磁总损耗为 45.73 W，p 取值为 8，lm (m) =0.002，

Jcu (Am- 2 ) = 3 × 106，转子的转动惯量为 0.235 kg·m2，其他

电磁耦合参数取值见表 1。
表 1 永磁同步电机电磁耦合参数设计

约束变量

Np, Ns

f /kHz
Cp, Cs /μF

V i /V
Vo /V

Rp, Rs /Ω

参数值

3
31

0.223 54
42
60
11 267

根据上述仿真设定进行永磁同步电机的输出增益

控制，为了对比性能，采用本文方法和传统的控制方法

对比电机的功率输出振荡曲线，得到结果如图 3所示。

分析上述仿真结果得知，采用本文方法进行电机控

制，功率输出的振荡幅度较小，确保了电机的稳定输出，

降低了传输损耗和衰减损失，保障了对电机的稳定性

控制。

5 结 语

本文提出一种基于改进粒子群算法的永磁同步电

机 PID控制方法，构建永磁同步电机 PID模糊控制目标

函数，选择电压、转矩、速度和电磁损耗等参数进行控制

约束参量分析，采用改进的粒子群算法进行 PID控制的

加权训练，实现控制目标函数最优化求解，进行永磁同

步电机 PID控制律优化。研究表明，该控制方法进行永

磁同步电机控制的调制性能较好，具有较好的输出增

益，振荡较小，控制可靠性较高。

图 3 永磁同步电机控制输出功率振荡曲线
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