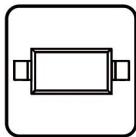
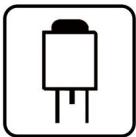
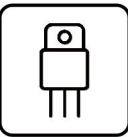
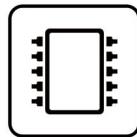


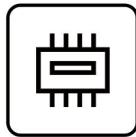
自主封測 品質把控 售後保障


WEB | WWW.TDSEMIC.COM

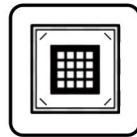

電源管理



顯示驅動

二三極管 LDO穩壓器


觸摸芯片

MOS管


運算放大器

存儲芯片

MCU

串口通信

74HC4053-TD

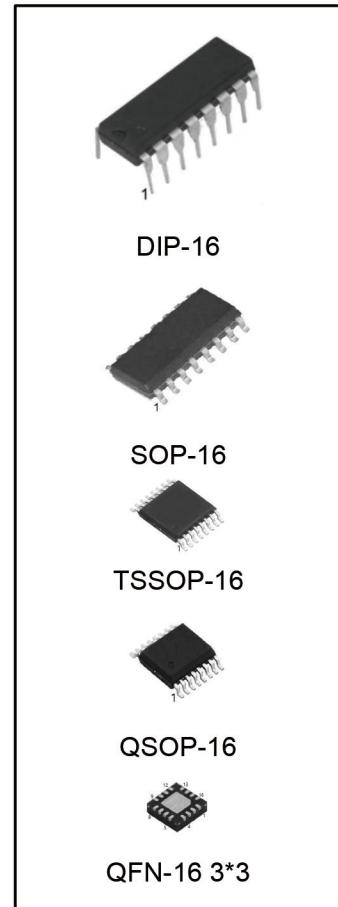
產品規格說明書

3 路二选一模拟开关

概 述

74HC4053 是一块带有公共使能输入控制位的 3 路二选一模拟开关电路。每一个多路选择开关都有两个独立的输入/输出 (Y_0 到 Y_1)、一个公共的输入/输出端 (Z) 和选择输入 (S_n)。每一路都包含了两个双向模拟开关，开关的一边连接到独立输入/输出 (Y_0 到 Y_1)，另一边连接到公共输入/输出端 (Z)。

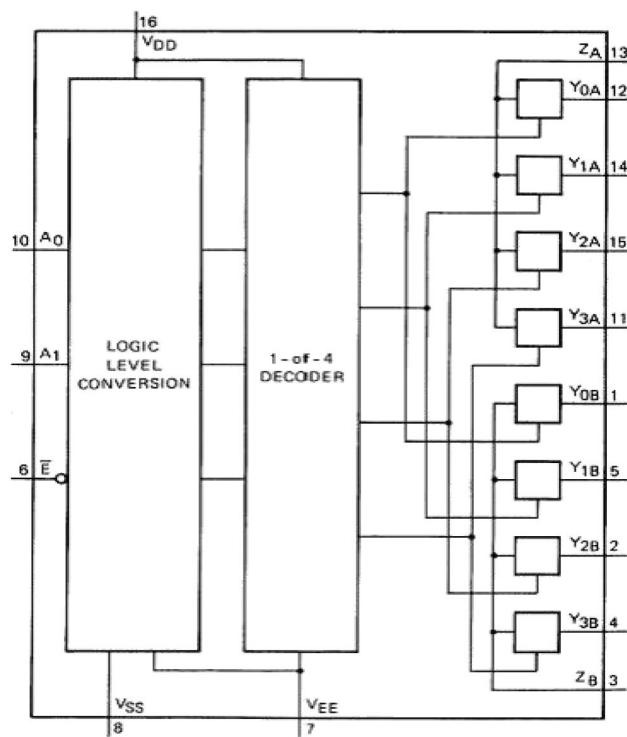
当 \bar{E} 为低电平时，两个开关中的其中一个被 S_n 选通（低阻导通态）。当 \bar{E} 为高电平时，所有开关都处于高阻关断态，与 $S_A \sim S_C$ 无关。

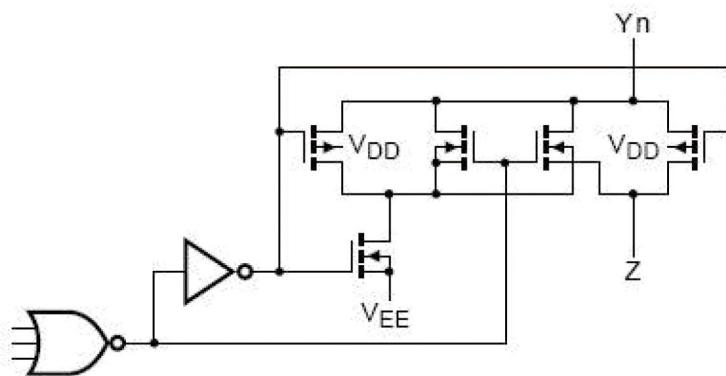

V_{DD} 和 V_{SS} 是连接到数字控制输入 (S_A 、 S_C 和 \bar{E}) 的电源电压。

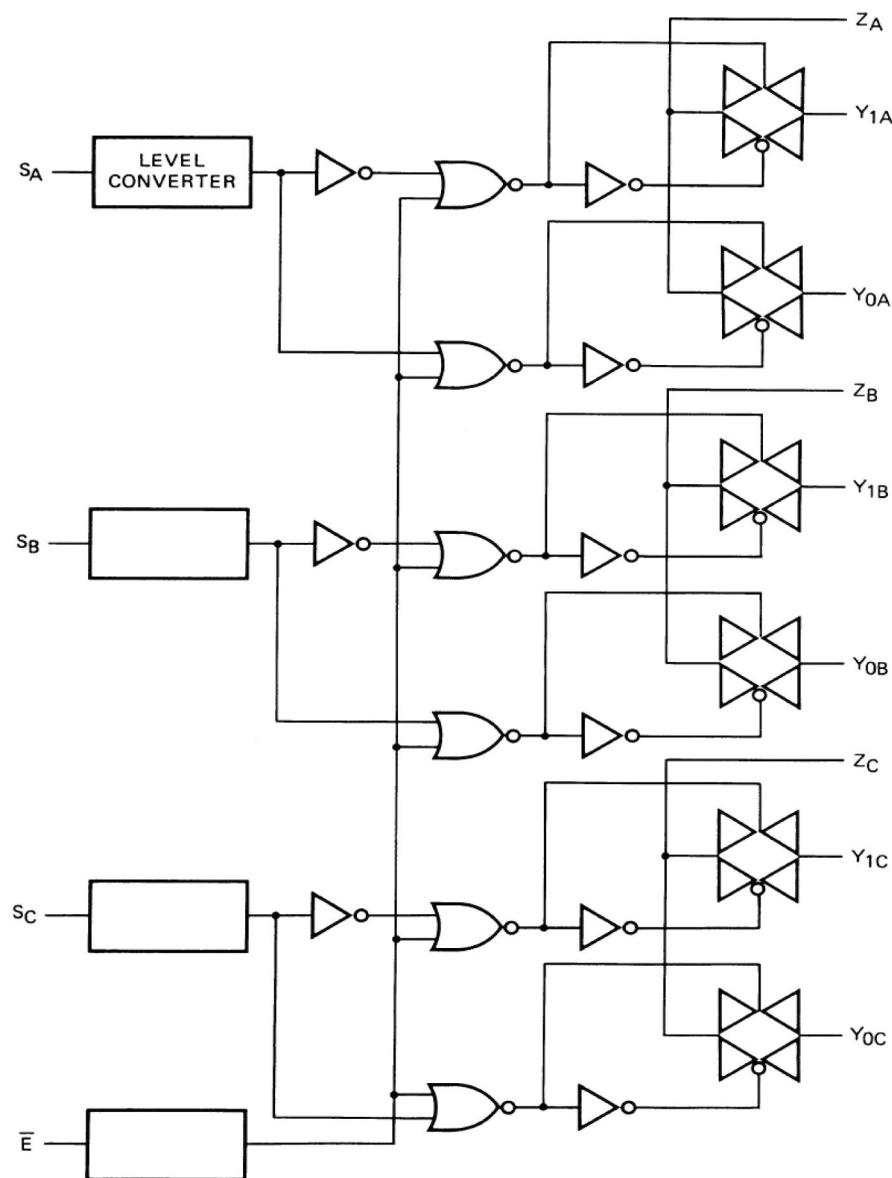
($V_{DD} - V_{SS}$) 的范围是 3 ~ 9V，模拟输入输出 ($Y_0 \sim Y_1$ 和 Z) 能够在最高 V_{DD} ，最低 V_{EE} 之间变化。($V_{DD} - V_{EE}$) 不会超过 9V。

对于用做数字多路选择开关， V_{EE} 和 V_{SS} 是连在一起的（通常接地）。

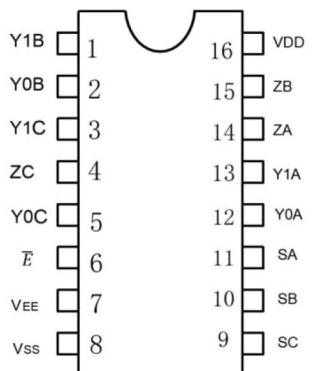
74HC4053 主要应用于模拟多路选择开关、数字多路选择开关及信号选通。


封装形式: DIP-16 / SOP-16 / TSSOP-16 / QSOP-16 / QFN-16 / QFN-16

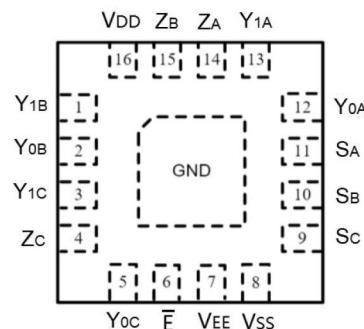

产品订购信息


产品名称	封装	打印名称	包装	包装数量
74HC4053N	DIP-16	74HC4053	管装	1000 只/盒
74HC4053	SOP-16	74HC4053	编带	2500 只/盘
74HC4053	TSSOP-16	HC4053	编带	2500 只/盘
74HC4053	QSOP-16	HC4053	编带	2500 只/盘
74HC4053	QFN-16 3*3	HC4053	编带	5000 只/盘

功能框



电路图 (一个开关)



逻辑图

引脚排列图

DIP-16/SOP-16/TSSOP-16/QSOP-16

QFN-16 3*3

引脚说明

引脚	符 号	功 能	引脚	符 号	功 能
1	Y _{1B}	独立输入/输出	9	S _C	选择输入端
2	Y _{0B}	独立输入/输出	10	S _B	选择输入端
3	Y _{1C}	独立输入/输出	11	S _A	独立输入端
4	Z _C	共用输入/输出	12	Y _{0A}	独立输入/输出
5	Y _{0C}	独立输入/输出	13	Y _{1A}	独立输入/输出
6	Ē	使能输入 (低电平有效)	14	Z _A	共用输入/输出
7	V _{EE}	负电源电压	15	Z _B	共用输入/输出
8	V _{SS}	接地	16	V _{DD}	正电源电压

功能说明 (真值表、逻辑关系等)

输入		沟道导通
Ē	S _n	
L	L	Y _{0n} —Z _n
L	H	Y _{1n} —Z _n
H	×	无

注: 1. H 是高电平状态 (较高的正电压)

2. L 是低电平状态 (较低的正电压)

3. " × " 是任意状态

4. n=A,B,C

极限参数

符号	参数	条件		最小	最大	单位
V_{DD}	电源电压范围			-0.5	+12	V
$V_{DD} - V_{EE}$	电源电压范围			-0.5	+12	V
I_Q	静态电流	$V_{DD} - V_{EE} = 12V$			2	μA
V_I	输入电压范围			-0.5	$V_{DD} + 0.5$	V
$ I_{IH} $	高电平输入电流	$V_{DD} = 5V, V_I = V_{DD}$			1	μA
$ I_{IL} $	低电平输入电流	$V_{DD} = 5V, V_I = 0V$			1	μA
V_{IO}	输入输出电压范围			$V_{EE} - 0.5$	$V_{DD} + 0.5$	V
I_{IK}	输入钳位电流	$V_I < -0.5V$ 或 $V_I > V_{DD} + 0.5V$		-	± 20	mA
I_{IOK}	输入输出钳位电流	$V_{IO} < V_{EE} - 0.5V$ 或 $V_{IO} > V_{DD} + 0.5V$		-	± 20	mA
I_T	开关导通电流	$V_O = -0.5V \sim V_{DD} + 0.5V$		-	± 25	mA
I_{DD}, I_{GND}	V_{DD} 或 GND 电流			-	± 50	mA
P_D	功耗				500	mW
T_{STG}	贮存温度			-65	+150	°C
T_{OP}	工作温度			-40	+85	°C
T_L	焊接温度	10 秒	DIP 封装	-	245	°C
			SOP 封装	-	245	

注：极限参数是指无论在任何条件下都不能超过的极限值。万一超过此极限值，将有可能造成产品劣化等物理性损伤；同时在接近极限参数下，不能保证芯片可以正常工作。

推荐使用条件

符号	参数	条件	最小	典型	最大	单位
V_{DD}	电源电压		3.0	5.0	9.0	V
V_{EE}	电源电压		-6.0		0	V
$V_{DD} - V_{EE}$	电源电压		3.0		9.0	V
V_I	输入电压		0	-	V_{DD}	V
V_{IO}	输入输出电压		V_{EE}	-	V_{DD}	V
tr, tf	输入上升、下降时间	$V_{CC} = 3.0V$	-	-	1000	ns
		$V_{CC} = 5.0V$	-		500	ns
		$V_{CC} = 6.0V$	-	-	400	ns
T_{OP}	工作温度		-40	-	+85	°C

直流特性

参数	$V_{DD} - V_{EE}$ (V)	符号	典型	最大	单位	条件
导通电阻	5 9	R_{ON}	350 80	2500 245	Ω	$V_{IS}=0 \sim V_{DD} - V_{EE}$ 见图 1
导通电阻	5 9	R_{ON}	115 50	340 160	Ω	$V_{IS}=0$ 见图 1
导通电阻	5 9	R_{ON}	120 65	365 200	Ω	$V_{IS}=V_{DD} - V_{EE}$ 见图 1
任意两个通道导通电阻的差值	5 9	ΔR_{ON}	25 10	— —	Ω	$V_{IS}=0 \sim V_{DD} - V_{EE}$ 见图 1
关断态漏电流 (所有通道关断)	5 9	I_{OZT}	— —	— 1000	nA	E 处于 V_{DD}
关断态漏电流 (任一通道)	5 9	I_{OZY}	— —	— 200	nA	E 处于 V_{EE}

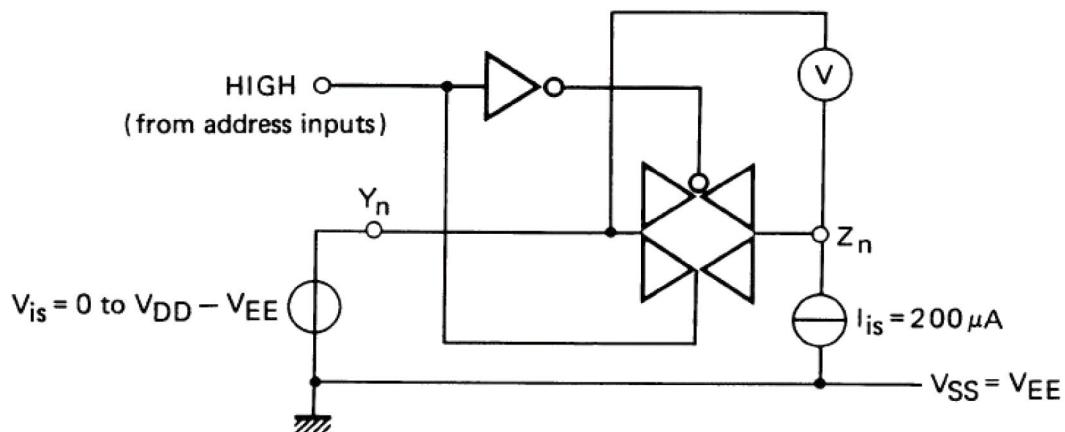
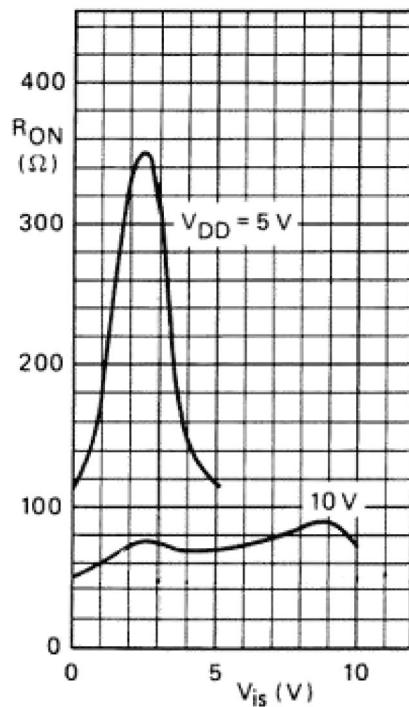



图 1 导通电阻的测试

图 2 导通电阻是输入电压的函数 ($I_{DS}=200\mu A$ $V_{SS}=V_{EE}=0V$)

交流特性 ($V_{SS}=V_{EE}=0V$; $T_{amb}=25^{\circ}C$; 输入转换时间小于 20ns)

	V_{DD} (V)	功率计算公式 (μW)	f_i 是输入频率(MHz) f_o 是输出频率(MHz) C_L 是负载电容(pF) $\sum(f_o C_L)$ 是输出之和 V_{DD} 是电源电压(V)
一块电路的动态功率耗散 (P)	5 9	$2500f_i + \sum(f_o C_L) \times V_{DD}^2$ $11500f_i + \sum(f_o C_L) \times V_{DD}^2$	

参数		V_{DD} (V)	符号	典型	最大	单位	备注
传输延时 V_{DS} → V_{OS}	高到低	5 9	t_{PHL}	10 5	20 10	ns	注释 1
	低到高	5 9	t_{PLH}	15 5	30 10	ns	
传输延时 A_N → V_{OS}	高到低	5 9	t_{PHL}	200 85	400 170	ns	注释 2
	低到高	5 9	t_{PLH}	275 100	555 200	ns	
输出 禁止 时间 $\bar{E} \rightarrow V_{OS}$	高	5 9	t_{PHZ}	200 115	400 230	ns	注释 3
	低	5 9	t_{PLZ}	200 120	400 245	ns	

输出使能时间 $\bar{E} \rightarrow V_{os}$	高	5 9	t_{PZH}	260 95	525 190	ns	注释3
	低	5 9	t_{PZL}	280 105	565 205	ns	注释3
失真 (正弦波响应)		5 9		0.25 0.04		%	注释4
任意两个通道之间的干扰		5 9		— 1		MHz	注释5
串扰, 使能端或选择端到输出		5 9		— 50		mV	注释6
关断态		5 9		— 1		MHz	注释7
导通态频率响应		5 9		13 40		MHz	注释8

注释: V_{is} 是 Y 或 Z 端的输入电压, V_{os} 是 Y 或 Z 端的输出电压

1. $R_L=10K\Omega$ 到 V_{EE} ; $C_L=50pF$ 到 V_{EE} ; $\bar{E}=V_{SS}$; $V_{is}=V_{DD}$ (方波); 如图 3 所示

2. $R_L=10K\Omega$; $C_L=50pF$ 到 V_{EE} ; $\bar{E}=V_{SS}$; $S_n=V_{DD}$ (方波); $V_{is}=V_{DD}$ 和 R_L 到 V_{EE} 用来测量 t_{PLH} ; $V_{is}=V_{EE}$ 和 R_L 到 V_{DD} 用来测量 t_{PHL} ; 如图 3 所示

3. $R_L=10K\Omega$; $C_L=50pF$ 到 V_{EE} ; $\bar{E}=V_{DD}$ (方波); $V_{is}=V_{DD}$, R_L 到 V_{EE} ; 测量 t_{PHZ} 和 t_{PZH} 时; $V_{is}=V_{EE}$ 和 R_L 到 V_{DD} 用来测量 t_{PLZ} 和 t_{PZL} ; 如图 3 所示

4. $R_L=10K\Omega$; $C_L=15pF$; 通道开; $V_{is}=V_{DD}$ (P-P) /2(正弦波, 在 $V_{DD}/2$ 处对称), $f_{is}=1KHz$; 如图 4 所示

5. $R_L=1K\Omega$; $V_{is}=V_{DD}$ (P-P) /2(正弦波, 在 $V_{DD}/2$ 处对称); $20\lg(V_{os}/V_{is})=-50dB$; 如图 5 所示

6. $R_L=10K\Omega$ 到 V_{EE} ; $C_L=15pF$ 到 V_{EE} ; \bar{E} 或 $S_n=V_{DD}$ (方波); 干扰是 $|V_{os}|$ (峰值); 如图 3 所示

7. $R_L=1K\Omega$; $C_L=5pF$; 通道关; $V_{is}=V_{DD}$ (P-P) /2(正弦波, 在 $V_{DD}/2$ 处对称); $20\lg(V_{os}/V_{is})=-50dB$; 如图 4 所示

8. $R_L=1K\Omega$; $C_L=5pF$; 通道开; $V_{is}=V_{DD}$ (P-P) /2(正弦波, 在 $V_{DD}/2$ 处对称); $20\lg(V_{os}/V_{is})=-3dB$; 如图 4 所示

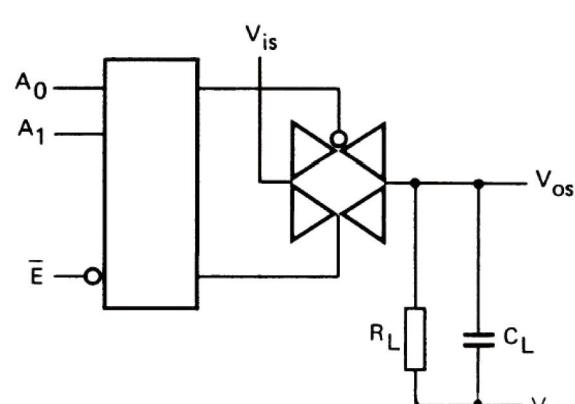


图 3

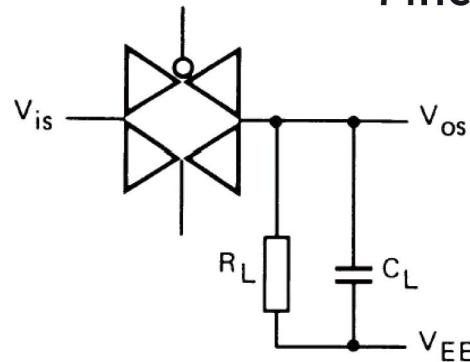
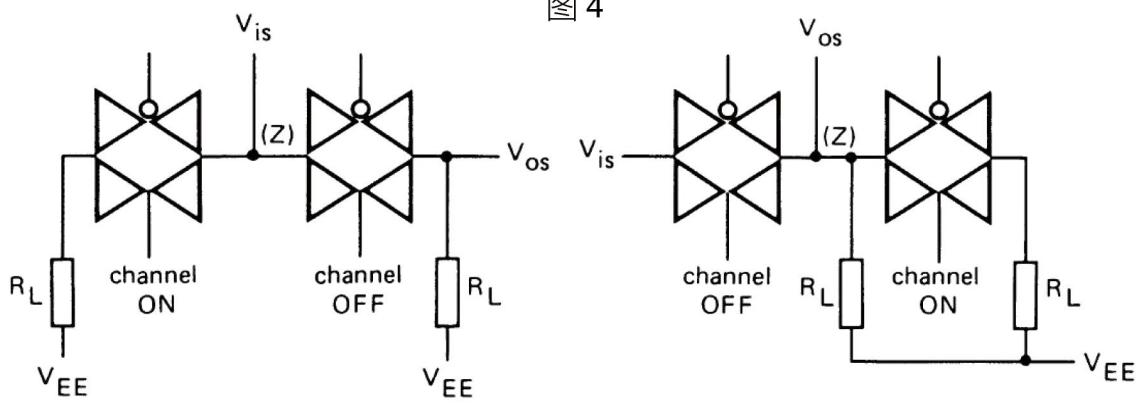
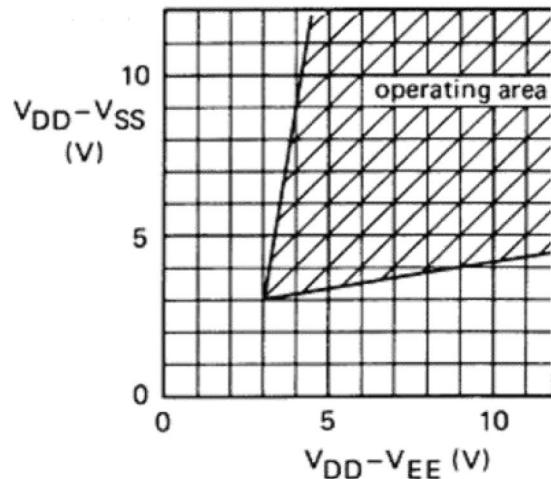
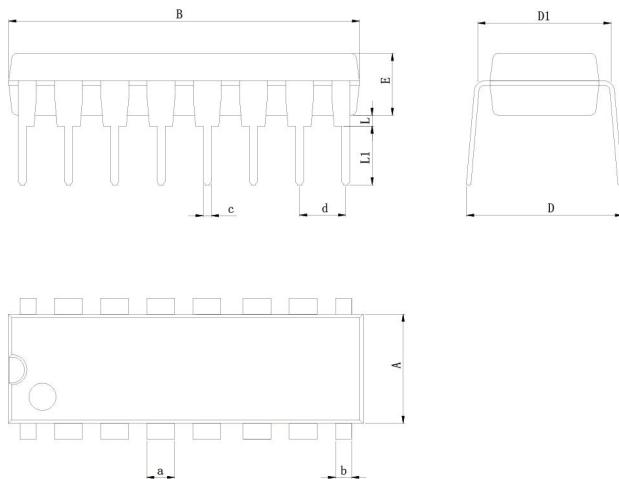



图 4


(a)

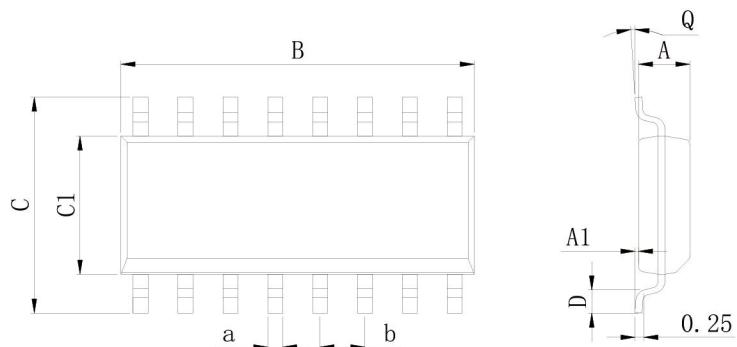
(b)

图 5


应用说明

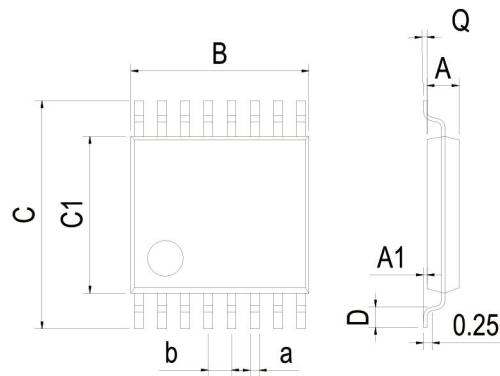
电路工作区域

封装外形尺寸


DIP-16

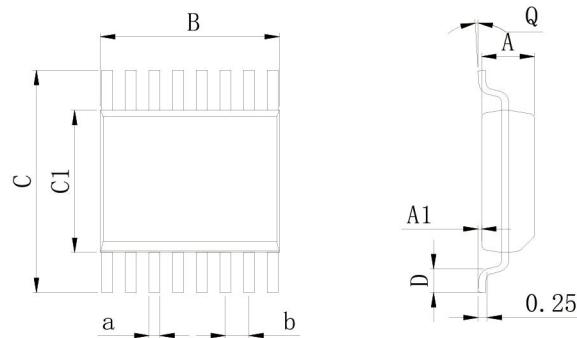
Dimensions In Millimeters(DIP-16)

Symbol:	A	B	D	D1	E	L	L1	a	b	c	d
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	


SOP-16

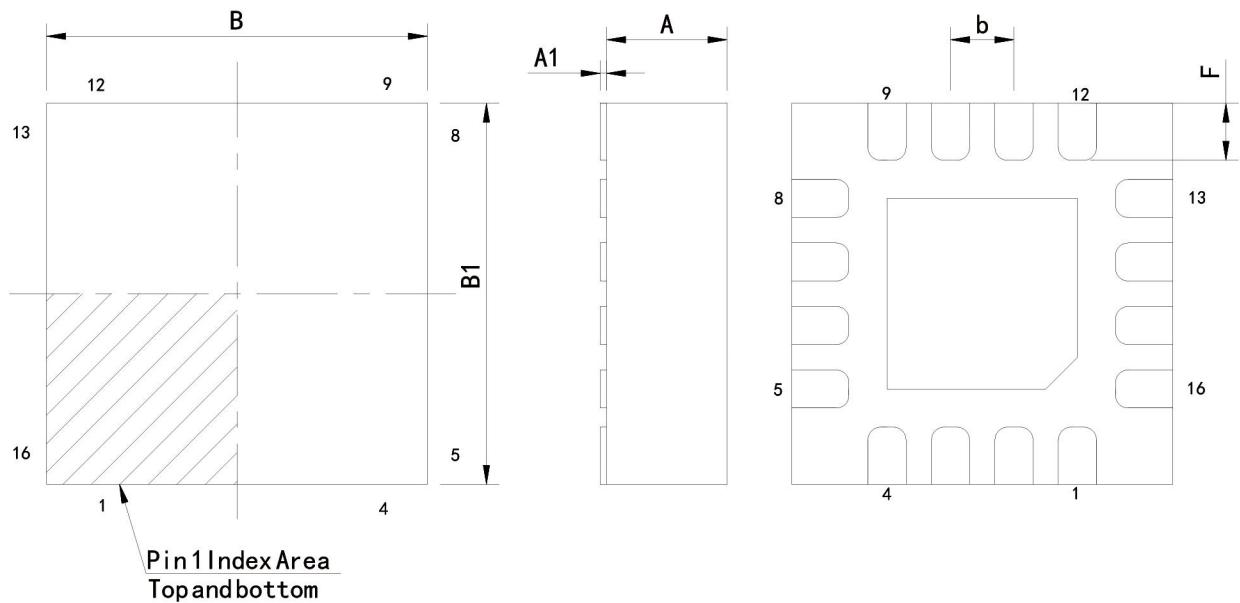
Dimensions In Millimeters(SOP-16)

Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	1.27 BSC
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45	


TSSOP-16

Dimensions In Millimeters(TSSOP-16)

Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	


QSOP-16

Dimensions In Millimeters(QSOP-16)

Symbol:	A	A1	B	C	C1	D	Q	a	b
Min:	1.35	0.05	4.80	5.80	3.80	0.40	0°	0.20	0.635 BSC
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.25	

QFN-16 3*3

Dimensions In Millimeters(QFN-16 3*3)

Symbol:	A	A1	B	B1	E	F	a	b
Min:	0.85	0	2.90	2.90	0.15	0.25	0.18	0.50TYP
Max:	0.95	0.05	3.10	3.10	0.25	0.45	0.30	