

SP3485EEN

3.3V 供电,256节点,12Mbps 半双工RS485/RS422 收发器特点:产品外形:

- ◆ 3.3V电源供电, 半双工;
- ◆ 1/8单位负载,允许最多256个器件连接到总线;
- ◆驱动器短路输出保护;
- ◆过温保护功能;
- ◆低功耗关断功能;
- ◆ 接收器开路失效保护;
- ◆具有较强的抗噪能力;
- ◆ 集成的瞬变电压抵制功能;
- ◆在电噪声环境中的数据传输速率可达到 12 Mbps;

描述

SP3485EEN是一款3.3V供电、半双工、低功耗,功能完全满足 TIA/EIA-485标准要求的 RS-485 收发器。

SP3485EEN包括一个驱动器和一个接收器,两者均可独立使能与关闭。当两者均禁用时,驱动器 与接收器均输出 高阻态。SP3485EEN具有1/8负载,允许256个3485收发器并接在同一通信总线上。 可实现高达12Mbps 的无差错数据 传输。

SP3485EEN工作电压范围为2.8V~4.5V, 具备失效安全(fail-safe)、过温保护、限流保护、过压 保护等功能。

引脚分布图

RO R VCC
RE B
DE A
DI D GND

图1 SP3485EEN引脚分布图

极限参数

参数	符号	大小	单位
电源电压	VCC	+7	V
控制端口电压	/RE, DE, DI	-0.3 [~] +7	V
总线侧输入电压	A, B	-7 [~] 13	V
接收器输出电压	RO	-0.3 [~] +7	V
工作温度范围		-40 [~] 85	$^{\circ}$
存储工作温度范围		-60 [~] 150	$^{\circ}$
焊接温度范围		300	$^{\circ}$
	SOP8	400	mW
连续功耗	MSOP8/8 µ MAX/VSSOP8	830	mW
	DIP8	700	mW

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器 件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

引脚定义

引脚序号	引脚名称	引脚功能
1	RO	接收器输出端。 当/RE为低电平时,若A-B≥200mV, RO输出为高电平; 若A-B≤-200mV, RO输出为低电平。
2	/RE	接收器输出使能控制。 当/RE接低电平时,接收器输出使能,RO输出有效;当/RE接高 电平时,接收器输出禁能,RO为高阻态; /RE接高电平且DE接低电平时,器件进入低功耗关断模式。
3	DE	驱动器输出使能控制。 DE接高电平时驱动器输出有效,DE为低电平时输出为高阻态; /RE接高电平且DE接低电平时,器件进入低功耗关断模式。
4	DI	DI驱动器输入。DE为高电平时,DI上的低电平使驱动器同相端A输出为低电平,驱动器反相端B输出为高电平;DI上的高电平将使同相端输出为高电平,反相端输出为低。
5	GND	接地
6	A	接收器同相输入和驱动器同相输出端
7	В	接收器反相输入和驱动器反相输出端
8	VCC	接电源

驱动器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
驱动器差分输出 (无负载)	VoD ₁		2.8	3. 3	4. 5	V
吸动关八松山	W D0	图 2, RL=540	1.5		VCC	
型 驱动差分输出	VoD2	图2, RL=100 Ω	2		VCC	V
输出电压幅值的变化 (NOTE1)	△Vop	图2, RL=54 Q			0. 2	V
输出共模电压	Voc	图2, RL=54 Ω			3	V
共模输出电压幅值 的变化(NOTE1)	△Voc	图 2, RL=54 Q			0.2	V
高电平输入	VIH	DE, DI, /RE	2.0			V
低电平输入	Vi	DE, DI, /RE			0.8	V
逻辑输入电流	INI	DE, DI, /RE	-2		2	uA
输出短路时的电流, 短路到高	IosD ₁	短路到0V~12V			250	mA
输出短路时的电流, 短路到低	IosD2	短路到-7V~0V	-250			mA
过温关断阈值温度				140		$^{\circ}$
过温关断迟滞温度				20		$^{\circ}$

(如无另外说明,VCC=3. 3V±10%, Temp=TMIN~TMAX, 典型值在VCC=+3. 3V, Temp=25℃)NOTE1:△Vop和△Voc分别是输入信号 DI 状态变化时引起的 Vop与 Voc幅值的变化。

接收器直流电学特性

参数	符号	测试条件	最小	典型	最大	单位
输入电流(A, B)	IN2	DE=OV, VCC=0或3.3V VIN=12 V			125	uA
		DE=OV,	100			
		VCC=0或3.3V VIn=-7 V	-100			uA

正向输入阈值电压	VIT+	-7V≤VCM≤12V			+200	mV
反向输入阈值电压	ViT-	-7V≤VcM≤12V	-200			mV
输入迟滞电压	Vhys	-7V≤Vcm≤12V	10	30		mV
高电平输出电压	VoH	IoUT=-2.5mA, VIp=+200 mV	VCC-1.5			V
低电平输出电压	VoL	IoUT=+2.5mA VIp=-200mV			0.4	V
三态输入漏电流	IozR	0. 4V <vo<2. 4="" td="" v<=""><td></td><td></td><td>±1</td><td>uA</td></vo<2.>			±1	uA
接收端输入电阻	RIN	-7V≪VCM≪12V	96			kΩ
接收器短路电流	IosR	0 V≤Vo≤VCC	±8		±60	mA

(如无另外说明, VCC=3.3V±10%, Temp=TMIN~TMAx, 典型值在VCC=+3.3V, Temp=25℃)

供电电流

参数	符号	测试条件	最小	典型	最大	单位
供电电流	Icci	/RE=OV, DE=OV		520	800	uA
	Icc ₂	/RE=VCC, DE=VCC		540	700	uA
关断电流	IsHDN	/RE=VCC, DE=0V		0.5	10	uA

驱动器开关特性

参数	符号	测试条件	最小	典型	最大	单位
驱动器差分 输出延迟	tpD	RDIFF= 60Ω ,		10	35	ns
驱动器差分输出 过渡时间	tTD	CLi=CL ₂ =100pF (见图3与图4)		12	25	ns
驱动器传播延迟 从低到高	tpLH	RDIFF=27Ω,		8	35	ns
驱动器传播延迟 从高到低	tpHL	(见图3与图4)		8	35	ns

tpLH-tpHL	tpDS			1	8	ns
使能到输出高	tpZH	RL=1109,		20	90	ns
使能到输出低	tpzL	(见图5、6)		20	90	ns
输入低到禁能	tpLz	Rz=1109,		20	80	ns
输入高到禁能	tpHZ	(见图5、6)		20	80	ns
关断条件下, 使能到输出高	tDSH	RL=110Ω, (见图5、6)		500	900	ns
关断条件下, 使能到输出低	tDSL	R=1102 (见图5、6)		500	900	ns

接收器开关特性

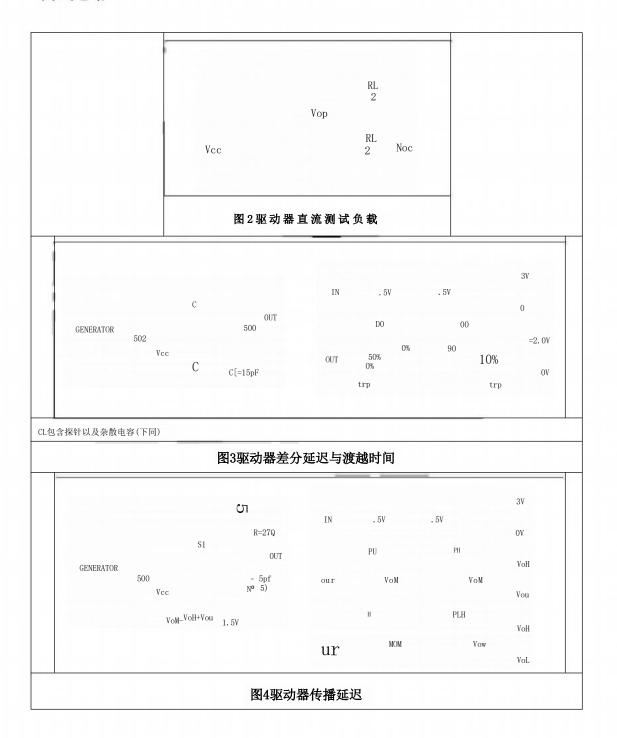
参数	符号	测试条件	最小	典型	最大	单位
接收器 输入到输出传播 延迟从低到高	tgPLH			80	150	ns
接收器 输入到输出传播 延迟从高到低	tRPHL	Cz=15pF 见图7与图8		80	150	ns
tkPLH-trpHL	tRPDS			7	10	ns
使能到输出低时间	tRPZL	Cz=15pF 见图7与图8		20	50	ns
使能到输出高时间	tgPZH	C=15pF 见图7与图8		20	50	ns
从输出低到 禁能时间	tpRLZ	Cz=15pF 见图7与图8		20	45	ns
从输出高到 禁能时间	tPRHZ	Cz=15pF 见图7与图8		20	45	ns
关断状态下 使能到输出高时间	tRPSH	Cz=15pF 见图7与图8		200	1400	ns
关断状态下 使能到输出低时间	tRPSL	Cz=15pF 见图7与图8		200	1400	ns
进入关断状态时间	tsHDN	NOTE2	80		300	ns

NOTE2: 当/RE=1, DE=0持续时间小于80ns时,器件必不进入shutdown状态,当大于300ns时,必 定进入 shutdown 状态。

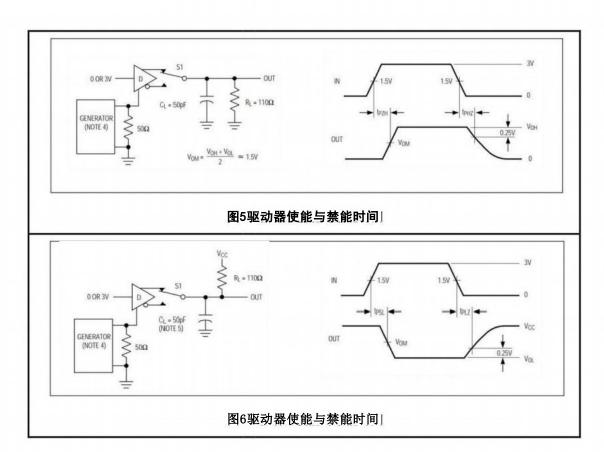
功能表

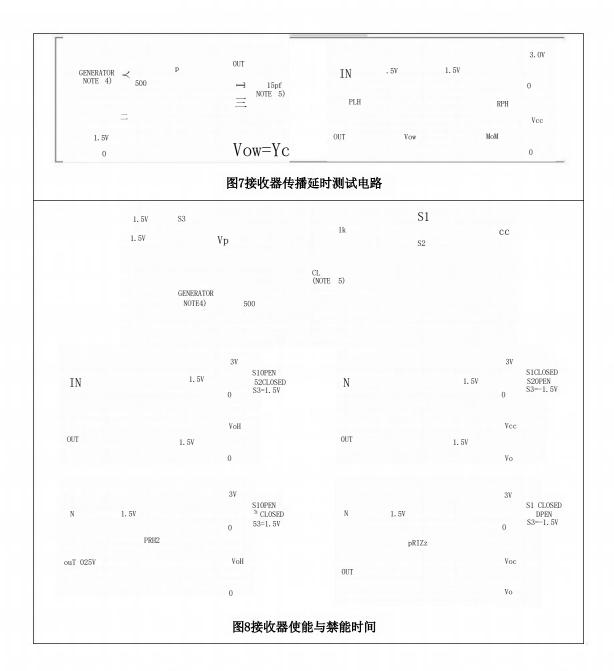
发送功能表

控制	制	输入	输	出
/RE	DE	DI	A	В
Х	1	1	Н	L
X	1	0	L	Н
0	0	X	Z	Z
1	0	X	Z(shutdown)	
v. /(产中亚 7. 克四				


X:任意电平; Z:高阻。

接收功能表


按	控制输入输出							
12		1111/	柳山					
/RE	DE	A-B	RO					
0	X	≥200mV	Н					
0	X	≪-200mV	L					
0	X	开/短路	Н					
1	Х	Х	Z					
X:任意电平; Z:高阻。								


测试电路

产品说明

1 简 述

SP3485EEN是用于RS-485/RS-422通信的半双工高速收发器,包含一个驱动器和接收器。具有失效安全,过压保护、过流保护、过热保护功能。SP3485EEN实现高达12Mbps的无差错数据传输。

2总线上挂接256个收发器

标准RS485接收器的输入阻抗为12kΩ(1个单位负载),标准驱动器可最多驱动32个单位负载。 SP3485EEN收发器的接收器具有1/8单位负载输入阻抗(96kΩ),允许最多256个收发器并行挂接在同一 通信总线上。这些器件可任意组合,或者与其它 RS485收发器进行组合,只要总负载不超过32个 单位负载,都可以挂接在同一总线上。

3驱动器输出保护

通过两种机制避免故障或总线冲突引起输出电流过大和功耗过高。第一,过流保护,在整个 共 模电压范围(参考典型工作特性)内提供快速短路保护。第二,热关断电路,当管芯温度超过 140℃ 时,强制驱动器输出进入高阻状态。

4典型应用

总线式组网: SP3485EEN RS485收发器设计用于多点总线传输线上的双向数据通信。图9显示了典型网络应用电路。这些器件也能用作电缆长于4000英尺的线性转发器,为减小反射,应 当在传输线两端以其特性阻抗进行终端匹配,主干线以外的分支连线长度应尽可能短。

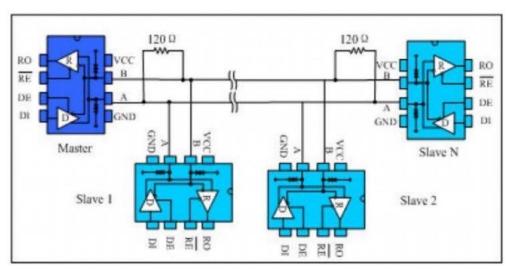


图9总线式 RS485半双工通讯网络

手拉手式组网: 又称菊花链拓扑结构,是 **RS485** 总线布线的标准及规范,是 TIA 等组织推荐使用的RS485 总线拓扑结构。其布线方式就是主控设备与多个从控设备形成手拉手连接方式,如图10所示,不留分支才是手拉手的方式。这种布线方式,具有信号反射小,通讯成功率高等优点。

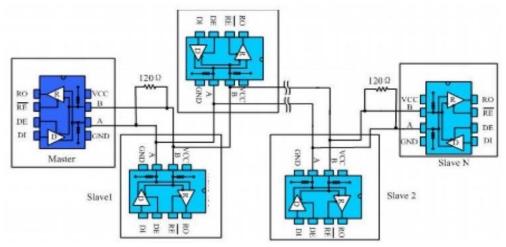


图10手拉手式 RS485半双工通讯网络

总线端口防护: 在恶劣的环境下,RS485 通讯端口通常都做好静电防护、雷击浪涌防护等额外的防护,甚至还需要做好防止 380V 市电接入的方案,以避免智能仪表、工控主机的损坏。图11为常见的3种RS485 总线端口防护方案。第一种为 AB 端口分别并联 TVS 器件到保护地,AB 端口之间并联 TVS 器件、AB 端口分别串联热敏电阻、并接气体放电管到保护地形成三级保护的方案;第二种为 AB 分别并联 TVS 到地、串联热敏电阻,AB 之间并联压敏电阻的三级防护方案;第三种为AB 分别接上下拉电阻到电源与地,AB 之间接TVS,A 或 B 某一端口接热敏电阻的方案。

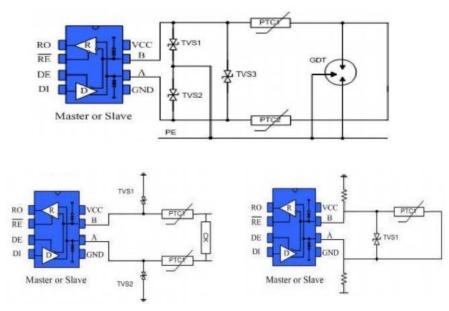


图11端口防护方案