

产品特点

- 低功耗(全部工作条件下): 1.0W@1GSPS、600mW@500MSPS
- 单载波 WCDMA 的 ACLR: 80dBc@80MHz 中频
- 可调模拟输出: 8.7mA-31.7mA(RL=25Ω-50Ω)
- 新颖的 2×、4×、8×插值器/粗调、复数调制器可以将载波放在 DAC 带宽中的任何位置
- 辅助 DAC 可控制外部 VGA 及失调
- 多芯片同步接口
- 高性能、低噪声锁相环时钟倍频器
- 数字反 sinc 滤波器
- 100 引脚 TQFP100 封装

应用范围

- 无线基础设施: W-CDMA、GSM、CDMA2000、TD-SCDMA、WiMax、LTE
- 数字高/低中频合成
- 内部数字上变频功能
- 发射分集
- 宽带通信: LMDS、MMDS、点对点通信

产品描述

CBM97D79TQ 是一款双通道、16 位、高动态范围数模转换器。该转换器可提供高达 1GSPS 采样速率;并可以产生最高达奈奎斯特频率的多载波。本产品具有针对直接变频传输应用进行优化的特性,这些特性包括:数字实/复调制以及增益与失调补偿等功能。产品中的 DAC 内核输出级经过优化,可以与主流的模拟正交调制器无缝接口,如:ADI 公司的 ADL537XFMOD 系列调制器。三线式接口允许对许多内部参数进行编程和回读。DAC 内核满量程输出电流可以在 10mA 至 30mA 范围内进行编程调节。本产品采用先进的 0.18µmCMOS 工艺制造,采用 1.8V/3.3V 电源供电,总功耗为 1.0W。

CBM97D79TQ 从功能上可以划分为数字滤波器单元、DAC 内核单元、时钟(包含内部锁相环)单元、辅助 DAC、多芯片同步单元等。数字部分对输入的信号进行数字内插和数字域实调制、复调制功能; DAC 内核对数字信号进行数字到模拟的转换; SPI 对整个芯片进行配置; 时钟单元为整个电路提供高质量的时钟、四个辅助 DAC 用于通道增益和失调校正、多芯片同步单元负责多个芯片间的同步功能。

目 录

产品特点	
应用范围	
功能框图	
引脚排列图	2
引脚简述	
典型测试结果	
1.动态性能测试	
2.静态测试	
外形尺寸图	
注意事项	
/	
包装/订购信息	

功能框图

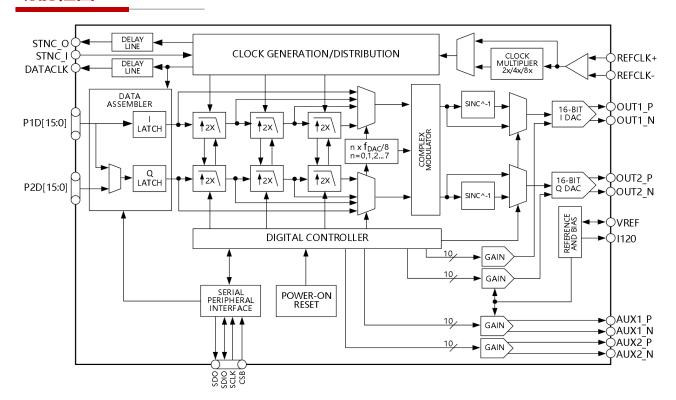


图 1 功能框图

引脚排列图

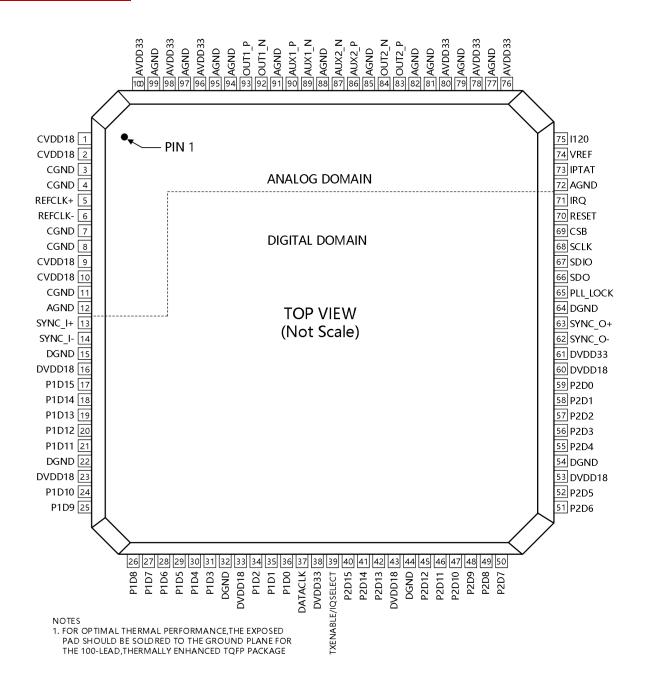


图 2 引脚排列图

引脚简述

引脚编号	引脚名称	描述	引脚编号	引脚名称	描述
1	CVDD18	1.8V时钟电源	32	DGND	数字地
2	CVDD18	1.8V时钟电源	33	DVDD18	1.8V数字电源
3	CGND	时钟地	34	P1D2	端口1数据输入D2
4	CGND	时钟地	35	P1D1	端口1数据输入D1
5	REFCLK+	差分时钟输入	36	P1D0	端口1数据输入D0(LSB)
6	REFCLK-	差分时钟输入	37	DATACLK	数据时钟输出
7	CGND	时钟地	38	DVDD33	3.3V数字电源
8	CGND	时钟地	39	TXENABLE/	发送使能。单端口模式下,此
9	CVDD18	1.8V时钟电源	39	IQSELECT	引脚也用作IQSELECT。
10	CVDD18	1.8V时钟电源	40	P2D15	端口2数据输入D15 (MSB)
11	CGND	时钟地	41	P2D14	端口2数据输入D14
12	AGND	模拟地	42	P2D13	端口2数据输入D13
13	SYNC_I+	差分同步输入	43	DVDD18	1.8V数字电源
14	SYNC_I-	差分同步输入	44	DGND	数字地
15	DGND	数字地	45	P2D12	端口2数据输入D12
16	DVDD18	1.8V数字电源	46	P2D11	端口2数据输入D11
17	P1D15	端口1数据输入D15 (MSB)	47	P2D10	端口2数据输入D10
18	P1D14	端口1数据输入D14	48	P2D9	端口2数据输入D9
19	P1D13	端口1数据输入D13	49	P2D8	端口2数据输入D8
20	P1D12	端口1数据输入D12	50	P2D7	端口2数据输入D7
21	P1D11	端口1数据输入D11	51	P2D6	端口2数据输入D6
22	DGND	数字地	52	P2D5	端口2数据输入D5
23	DVDD18	1.8V数字电源	53	DVDD18	1.8V数字电源
24	P1D10	端口1数据输入D10	54	DGND	数字地
25	P1D9	端口1数据输入D9	55	P2D4	端口2数据输入D4
26	P1D8	端口1数据输入D8	56	P2D3	端口2数据输入D3
27	P1D7	端口1数据输入D7	57	P2D2	端口2数据输入D2
28	P1D6	端口1数据输入D6	58	P2D1	端口2数据输入D1
29	P1D5	端口1数据输入D5	59	P2D0	端口2数据输入D0 (LSB)

30	P1D4	端口1数据输入D4	60	DVDD18	1.0)/粉令中语
					1.8V数字电源
31	P1D3	端口1数据输入D3	61	DVDD33	3.3V数字电源
62	SYNC_O-	差分同步输出	80	AVDD33	模拟地
63	SYNC_O+	差分同步输出	81	AGND	模拟地
64	DGND	数字地	82	AGND	通道2差分DAC电流输出
65	PLL_LOCK	PLL锁定指示	83	OUT2_P	通道2差分DAC电流输出
66	SDO	三线式接口端口数据输出	84	OUT2_N	模拟地
67	SDIO	三线式接口端口数据输入/输出	85	AGND	通道2辅助DAC电流输出
68	SCLK	三线式接口端口时钟	86	AUX2_P	通道2辅助DAC电流输出
69	CSB	三线式接口端口片选信号	87	AUX2_N	模拟地
70	RESET	复位, 高电平有效	88	AGND	
71	IRQ	中断请求	89	AUX1_N	通道1辅助DAC电流输出
72	AGND	模拟地	90	AUX1_P	通道1辅助DAC电流输出
	те	工厂测试引脚。	91	AGND	模拟地
73	IPTAT	输出电流与绝对温度成比例, 25℃时约为14μA,斜率约为	92	OUT1_N	通道1差分DAC电流输出
/3	25℃ ₽		93	OUT1_P	通道1差分DAC电流输出
		20nA/℃。此引脚应保持浮空。	94	AGND	模拟地
74	VREF	基准电压输出	95	AGND	模拟地
75	I120	120μA基准电流	96	AVDD33	3.3V模拟电源
76	AVDD33	3.3	97	AGND	模拟地
77	AGND	3.3V模拟电源	98	AVDD33	3.3V模拟电源
78	AVDD33	模拟地	99	AGND	模拟地
79	AGND	3.3V模拟电源	100	AVDD33	3.3V模拟电源

推荐工作条件

● 电源电压: 3.3V、1.8V● 工作温度 TA: -40℃~85℃

绝对最大额定值

● 电源电压: -0.3V~V_{DD}+0.3V (当该模块电源电压为 1.8V 时,对应 V_{DD}=1.8V;当该模块电源电压 为 3.3V 时,对应 V_{DD}=3.3V)

● 贮存温度 T_S: -65℃~150℃

典型测试结果

为了对芯片进行评估,在常温下对芯片的各种工作模式进行了动态参数和静态参数测试。动态参数主要包括无杂散动态范围和三阶交调失真。静态参数包括微分非线性和积分非线性参数的测试。具体的测试结果如下所示。

1. 动态性能测试

(1) 无杂散动态范围(SFDR)

表 1 所示为芯片 (贴片测试) 在不同工作模式下的无杂散动态范围测试结果。表 1 所示的结果表示了外部直接送入转换时钟和内部开启锁相环两种情况下的测量值。在表 1 中,对应于 f_{dac}=100MSPS, f_{out}=20MHz 情况下,此时未开启锁相环。因为在此情况下,锁相环的 VCO 不能提供该转换频率(ADI 原始产品也为同样情况)。

无杂散动态范围 (SFDR)	测试条件	测量值 (外部时钟)	测量值 (内部锁相环)
f_{dac} =100SPS, f_{out} =20MHz	滤波器为 1x 模式,无偏移,无调制	84dBc	none
f_{dac} =200SPS, f_{out} =50MHz	滤波器为 1x 模式,无偏移,无调制	90dBc	88dBc
f _{dac} =400SPS, f _{out} =70MHz	滤波器为 2x 模式,无偏移,无调制	75dBc	75dBc
f _{dac} =800SPS, f _{out} =70MHz	滤波器为 4x 模式,无偏移,无调制	76dBc	76dBc
f_{dac} =1000SPS, f_{out} =10MHz	滤波器为 8x 模式,无偏移,无调制	73dBc	72dBc
f_{dac} =1000SPS, f_{out} =40MHz	滤波器为 8x 模式,无偏移,无调制	85dBc	83dBc

表 1. 无杂散动态范围测试值

图 3 所示为芯片在 70MHz 的中频输出,800MSPS 转换速率下的无杂散动态范围测试值。图中所示为 I 通道的测量结果。

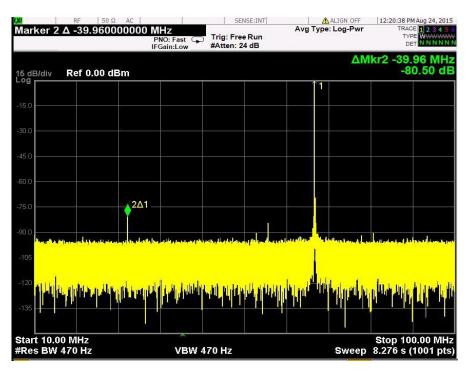


图 3 无杂散动态范围测试结果(中频输出 70MHz, 转换率 800MSPS)

(2) 三阶交调失真(IMD)

表 2 所示为芯片 (贴片测试) 在不同工作模式下的三阶交调失真测试结果。

表 2. 三阶交调失真测试值

无杂散动态范围 (SFDR)	测试条件	测量值 (外部时钟)	测量值 (内部锁相环)
f_{dac} =200SPS, f_{out} =20MHz	滤波器为 1x 模式,无偏移,无调制	79dBc	76dBc
f_{dac} =400SPS, f_{out} =50MHz	滤波器为 1x 模式,无偏移,无调制	76dBc	80dBc
f_{dac} =400SPS, f_{out} =70MHz	滤波器为 2x 模式,无偏移,无调制	73dBc	75dBc
f _{dac} =800SPS, f _{out} =70MHz	滤波器为 4x 模式,偏移 f_{data} ,无调制	73dBc	67dBc

图 4 所示为芯片在 79MHz/80MHz 的中频输出, 400MSPS 转换速率下的三阶双音互调测试值。 图中所示为 I 通道的测量结果。

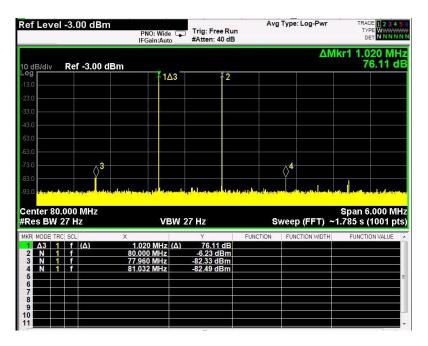


图 4 三阶双音互调测试结果(中频输出 79MHz/80MHz, 转换率 400MSPS)

2. 静态测试

表 3. 芯片静态参数测试值

芯片编号	电路	微分非线性 (LSB)	积分非线性 (LSB)	失调误差 (%FSR)	增益误差 (%FSR)
1	1	-0.61~2.72	-2.34~5.45	0.003%	-1.60%
•	Q	-1.14~1.75	-2.47~3.85	0.004%	-1.60%
2	I	-1.86~1.28	-3.08~3.24	0.003%	-1.80%
۷	Q	-2.55~1.81	-6.85~2.76	0.004%	-1.80%
2	I	-2.69~1.33	-2.41~4.04	0.003%	-1.60%
3	Q	-3.62~0.08	-2.84~2.96	0.004%	-1.60%
4	I	-2.63~0.76	-5.18~1.51	0.003%	-2.20%
4	Q	-2.16~1.59	-3.49~3.29	0.004%	-2.20%
5	I	-1.75~2.16	-4.08~4.37	0.002%	-1.60%
3	Q	-2.74~0.814	-2.69~4.33	0.003%	-1.60%

表 3 所示为对五只随机选取的芯片进行静态测试的测试结果。

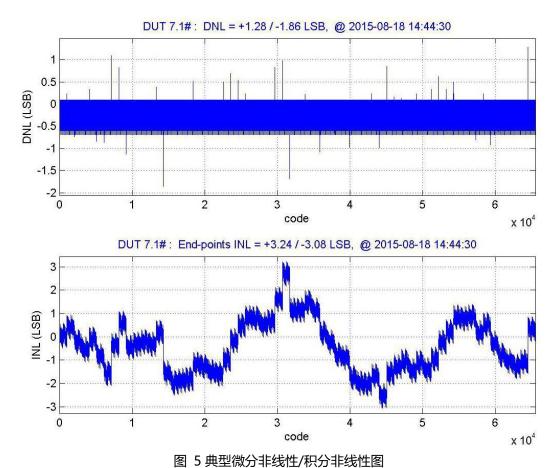
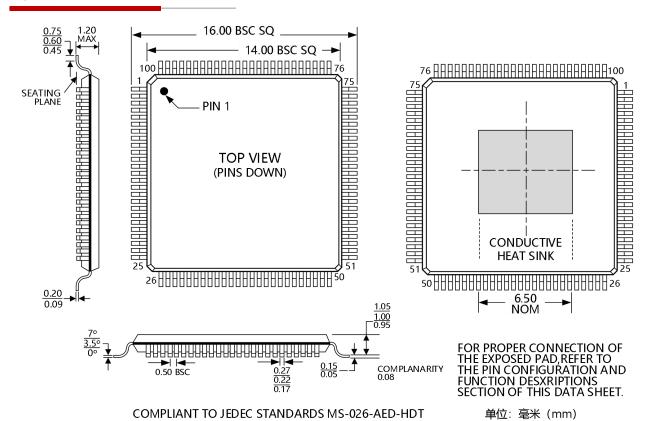



图 5 所示为典型的微分非线性和积分非线性的实测图形。

外形尺寸图

注意事项

1. 产品安装注意事项:

- (1) 要求应用对象电路板有一个完整干净的地。
- (2) 要求应用对象为多层布线板且内含独立的地层。

2. 产品使用注意事项:

- (1)要求应用对象电路板的数字地和模拟地尽量分离,不要将数字线布于模拟线旁边或于 DAC 底下。
- (2) 输入连线应尽量短以最小化寄生电容和噪声引入。
- (3) 很重要的是,芯片的地应该通过尽量多的渠道和足够多的面积与 PCB 板的地层相连。

3. 产品防护注意事项:

(1) 产品所有引出端均设计有静电保护结构,不过大能量电脉冲仍然可能损坏电路,因此在测试、搬运、储藏过程中,应注意静电防护。

常见故障及处理办法

- (1) 无信号输出:检查电源电压、输入信号、时钟是否正确加载。
- (2) 出现溢出信号: 检查基准是否正常工作, 输入信号幅度是否正确。
- (3) 器件工作不稳定: 检查电源, 保证电源电压稳定。

参数产品信息表

	承研承制单位	国内产品 (芯佰微电子)	国外产品 (ADI)
	详细规范编号及名称	CBM97D79TQ 型双通道 16位1GSPS D/A 转换器详细规范	
	产品型号 (规格)	CBM97D79TQ	AD9779ABSVZRL
	分辨率	16bits	16bits
	微分非线性	-6LSB~6 LSB	±2.1LSB (典型值)
	积分非线性	-10LSB~10LSB	±6LSB (典型值)
电	失调误差	-1%FSR~+1%FSR	-0.001%FSR~0.001%FSR
性	DAC 失调误差温度系数	-300ppm FSR/°C~ 300ppm FSR/°C	0.04ppm FSR/℃ (典型值)
能	增益误差	-8%FSR~+8%FSR	±2%FSR(典型值)
指	DAC 增益误差温度系数	-800ppm FSR/°C~ 800ppm FSR/°C	100ppm FSR/℃(典型值)
标	内部基准电压	1.0V~1.5V	1.2V (典型值)
	基准电压温度系数	-250ppm/°C~250ppm/°C	30ppm/°C(典型值)
	内部基准输出电阻	3.5kΩ~7.5kΩ	5KΩ (典型值)
	满量程输出电流	7.5mA~32.5mA	8.66mA~31.66mA
	DAC 输出电压顺从范围	-1V~1V	-1.0V~1.0V

	主 DAC 输出电阻	设计保证	10MΩ (典型值)
	主 DAC 输出单调性	设计保证	设计保证
	辅助 DAC 输出分辨率	设计保证	10 位
	辅助 DAC 输出电阻	设计保证	1MΩ (典型值)
	辅助 DAC 输出单调性	设计保证	设计保证
	辅助 DAC 满量程输出电流	-2.5mA~2.5mA	-1.998mA~1.998mA
	辅助 DAC 输出电压范围 (源)	0V~1.6V	0V~1.6V
	辅助 DAC 输出电压范围 (吸)	0.8V~1.6V	0.8V~1.6V
	模拟电源电压(V _{DDA})	3.13V~3.47V	3.13V~3.47V
	模拟电源电压(V_{DDC})	1.7V~2.05V	1.7V~2.05V
	数字电源电压($V_{\rm DDD}$ <3.3>)	3.13V~3. 47V	3.13V~3. 47V
电	数字电源电压($V_{\rm DDD}$ <1.8>)	1.7V~2.05V	1.7V~2.05V
性	功耗(1X模式 <i>,f_{DAC}=</i> 100MSPS, IF=1MHz)		≤300mW (典型值)
能	功耗(2X模式, <i>f</i> _{DAC} =320MSPS IF=16MHz,PLL关)	≤650mW	498mW (典型值)
指	1×模式延迟	设计保证	25个DACCLK 周期(典型值)
标	2×模式延迟	设计保证	70个DACCLK 周期(典型值)
	4×模式延迟	设计保证	146个DACCLK 周期(典型值)
	8×模式延迟	设计保证	297个DACCLK 周期(典型值)
	反 SINC 模式	设计保证	18个DACCLK 周期(典型值)
	三线式接口最大时钟速率	≥6MHz	≥40MHz
	时钟高脉冲最小宽度	设计保证	≥12.5ns
	时钟低脉冲最小宽度	设计保证	≥12.5ns
	SDIO 建立时间	设计保证	≥2.8ns
	SDIO 保持时间	设计保证	≥0.0ns
	CSB 建立时间	设计保证	≥2.8ns
	SDO 数据有效时间	设计保证	≥2.0ns
	上电时间	设计保证	260mS (典型值)
	复位信号最小脉冲宽度	设计保证	≤2 ↑ DACCLK
	无杂散动态范围 (f _{DAC} =100MSPS,f _{Out} =20MHz)	≥65dBc	82dBc (典型值)
	无杂散动态范围 (f _{DAC} =200MSPS, f _{Out} =50MHz)		82dBc (典型值)
	无杂散动态范围 (f _{DAC} =400MSPS,fout=70MHz)		80dBc (典型值)

	无杂散动态范围	≥60dBc	87dBc (典型值)
	$(f_{DAC} = 800MSPS, f_{Out} = 70MHz)$	200000	07000(夹王恒)
	双音互调 (f _{DAC} =200MSPS, f _{Out} =50MHz)	≥65dBc	91dBc (典型值)
	双音互调 (f _{DAC} =200MSPS, f _{Out} =50MHz)		85dBc (典型值)
	双音互调 (f _{DAC} =400MSPS, f _{Out} =80MHz)		81dBc (典型值)
	双音互调 (f _{DAC} =800MSPS, f _{Out} =100MHz)	≥55dBc	81dBc (典型值)
	噪声谱密度 (f _{DAC} =200MSPS, f _{Out} =80MHz)		-158dBm/Hz (典型值)
	噪声谱密度 (f _{DAC} =400MSPS, f _{Out} =80MHz)		-160dBm/Hz (典型值)
电	噪声谱密度 (f _{DAC} =800MSPS, f _{Out} =80MHz)		-161dBm/Hz (典型值)
性	第一临信道泄露 (f _{DAC} =491.52MSPS, fout=100MHz)		79dBc (典型值)
能指	第一临信道泄露 (f _{DAC} =491.52MSPS, f _{OUT} =200MHz)		74dBc (典型值)
标	DAC 时钟输入共模电压	350mV~450mV	300mV~500mV
, [5]	工作频率	≥1000MHz	≥900MHz
	最大时钟速率	≥200MHz	≥250MHz)
	输入数据相对 DATACLK 建立时间	设计保证	≥3.0ns
	输入数据相对 DATACLK 保持时间	设计保证	≥-0.05ns
	输入数据相对 REFCLK 建立时间	设计保证	≥-0.80ns
	输入数据相对 REFCLK 保持时间	设计保证	≥3.8ns
	第二临信道泄露 (f _{DAC} =491.52MSPS, f _{Out} =100MHz)		81dBc (典型值)
	第二临信道泄露 (f _{DAC} =491.52MSPS, f _{Out} =200MHz)		78dBc (典型值)
	工作温度	-40°C~85°C	-40°C~85°C
环	贮存温度	-65°C~150°C	-65°C~150°C
境	扫频振动	GJB548B-2005方法2007试验条件 A	
适应	热冲击	GJB548B-2005方法 1011试验条件 B, 15次循环	
性	机械冲击	GJB548B-2005方法2002试验条件 B	
,	质量等级	工业级	工业级
	参考的国外公司及资料名称	ADI 公司 AD9779A 数据手册	
	封装形式和尺寸	TQFP100 (16mm×16mm×1.2mm)	SV-100-(16mm×16mm×1.2mm)
	替代建议	■ 直接替代 □ 有效替付	弋 □ 功能替代

包装/订购信息

产品名称	订单编 码	温度范围	产品封装	运输及包装数量	包装标记
CBM97D79TQ		-45°C-85°C	TQFP-100	TRAY,90	