BMB65N380E1 N-Channel Power MOSFET

650 V, 9.6 A, 380 mΩ

Description

Applications

٠

BMB65N380E1 is power MOSFET using bestirpower's advanced super junction technology that can realize very low on- resistance and gate charge. It will provide much high efficiency by using optimized charge coupling technology. These user friendly devices give an advantage of Low EMI to designers as well as low switching loss.

PFC, Hard & Soft Switching Topologies

Industrial & Consumer Power Supplies

Features

BV _{DSS} @ T _{J,max}	I _D	R _{DS(on),max}	Q _{g,typ}
700 V	9.6 A	380 mΩ	16.5 nC

- Reduced Switching & Conduction Losses
- Lower Switching Noise
- 100% Avalanche Tested
- Halogen Free, and RoHS Compliant

Absolute Maximum Ratings ($T_c = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Value	Unit		
V _{DSS}	Drain to Source Voltage		650	V	
V _{GSS}	Gate to Source Voltage		±30	V	
	Droip Current	Continuous (T _C = 25°C)	9.6		
ID		Continuous (T _C = 125℃)	4.2	A	
I _{DM}	Drain Current	Pulsed (Note1)	28.8	А	
E _{AS}	Single Pulsed Avalanche Energy (Note2)		40	mJ	
I _{AS}	Avalanche Current (Note2)		2.5	А	
E _{AR}	Repetitive Avalanche Energy (Note1)		0.87	mJ	
	MOSFET dv/dt		100)//	
dv/dt	Peak Diode Recovery dv/dt (Note3)		20	v/ns	
	Devues Disais ation	(T _C = 25°C)	87	W	
PD	Power Dissipation	Derate Above 25℃	0.7	W/°C	
T_{J}, T_{STG}	Operating and Storage Temperature Range		-55 to 150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 10 Seconds		260	°C	

Thermal Characteristics

Symbol	Parameter	Value	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	1.43	°C \\ \
R _{eJA}	Thermal Resistance, Junction to Ambient, Max.	62.5	C/VV

Package Marking and Ordering Information

Part Number	Top Marking	Package	Packing Method	Quantity
BMB65N380E1	BMB65N380E1	TO263-2	Tape&Reel	800 units

Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Characteristics						
DV		$V_{GS} = 0 V, I_{D} = 1 mA$	650			
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 1 \text{ mA}, \text{ T}_{J} = 150^{\circ}\text{C}$	700			V
		V _{DS} = 650 V, V _{GS} = 0 V			1	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 520 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 125^{\circ}\text{C}$		2		μΑ
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 0.8 \text{ mA}$	2.5	3.5	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 4 A		318	380	mΩ
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 400 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		624		pF
C _{oss}	Output Capacitance	f = 250 kHz		17		pF
C _{o(tr)}	Time Related Output Capacitance			224		pF
C _{o(er)}	Energy Related Output Capacitance	$V_{DS} = 0 V$ to 400 V, $V_{GS} = 0 V$		28		pF
Q _{g(tot)}	Total Gate Charge at 10 V			16.5		nC
Q _{gs}	Gate to Source Charge	$V_{\rm DS} = 400 \text{ V}, \text{ I}_{\rm D} = 4 \text{ A},$		3.4		nC
Q _{gd}	Gate to Drain "Miller" Charge	$v_{GS} = 10$ v		8.2		nC
R _G	Gate Resistance	f = 1 MHz		6.9		Ω
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time			9		ns
t _r	Turn-On Rise Time	$V_{\rm DS} = 400 \text{ V}, \text{ I}_{\rm D} = 4 \text{ A},$		9		ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 V, R_G = 10 \Omega$ See Figure 13		39		ns
t _f	Turn-Off Fall Time			10		ns
Source-D	rain Diode Characteristics					L
I _S	Maximum Continuous Diode Forward Current				9.6	Α
I _{SM}	Maximum Pulsed Diode Forward Current				28.8	Α
V _{SD}	Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 4 A			1.2	V
t _{rr}	Reverse Recovery Time	$V_{DD} = 400 \text{ V}$, $I_{SD} = 4 \text{ A}$,		220		ns
Q _{rr}	Reverse Recovery Charge	$dI_{\rm F}/dt = 100 \text{ A}/\mu\text{s}$		1.78		μC

XNotes:

1. Repetitive rating: pulse-width limited by maximum junction temperature.

2. $I_{AS} = 2.5 \text{ A}, R_{G} = 25 \Omega$, starting $T_{J} = 25^{\circ}\text{C}$. 3. $I_{SD} \le 4 \text{ A}, \text{ di/dt} \le 100 \text{ A/}\mu\text{s}, V_{DD} \le 400 \text{ V}, \text{ starting } T_{J} = 25^{\circ}\text{C}$.

Typical Performance Characteristics

bestirpower

Typical Performance Characteristics

bestirpower

Test Circuits

Figure 15. Peak Diode Recovery dv/dt Test Circuit and Waveforms

Package Outlines

TO263-2L

COMMON DIMENSIONS

SYMBOL	-	1.6.9.	
STWDOL	MIN	NOM	MAX
A	4.37	4.57	4.77
A1	1.22	1.27	1.42
A2	2.49	2.69	2.89
A3	0.00	0.13	0.25
b	0.70	0.81	0.96
b1	1.17	1.27	1.47
С	0.30	0.38	0.53
D1	8.50	8.70	8.90
D4	6.60		-
Е	9.86	10.16	10.36
E5	7.06	-	
е	2.54 BSC		
Н	14.70	15.10	15.50
H2	1.07	1.27	1.47
L	2.00	2.30	2.60
L1	1.40	1.55	1.70
L4	0.25 BSC		
θ	0°	5°	9°

* Dimensions in millimeters

Disclaimer

Bestirpower reserve the right to make changes, corrections, enhancements, modifications, and improvements to Bestirpower products and/or to this document at any time without notice.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Bestirpower does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.

This document is the property of Bestirpower Co,. LTD., and not allowed to copy or transformed to other format if not under the authority approval.

© 2024 bestirpower – All rights reserved