

高能效CCM+PFM+QR绿色节能PWM控制器

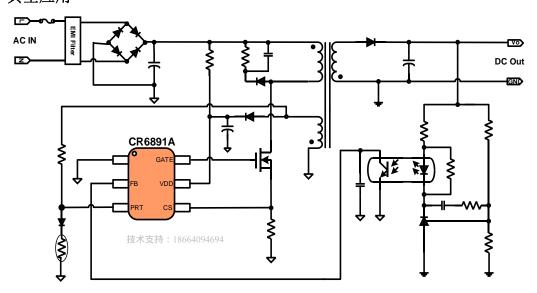
主要特点

- 较低的启动电流 (大约3μA)
- 内置软启动减少MOSFET应力
- CCM+PFM+QR控制模式
- 内建同步斜坡补偿,消除次谐波震荡
- 内建频率抖动功能,降低EMI
- CCM模式下最高工作频率65kHz
- QR最高工作频率77kHz
- 轻载降低工作频率

- 可编程外置过温保护
- VDD过压保护和输出过压保护
- 内置前沿消隐电路
- 内置输出二极管短路保护
- 内置过温保护
- 过载保护
- SOT23-6L封装

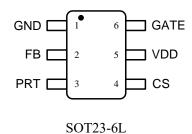
基本应用

- AC/DC适配器
- 电视及监视器电源

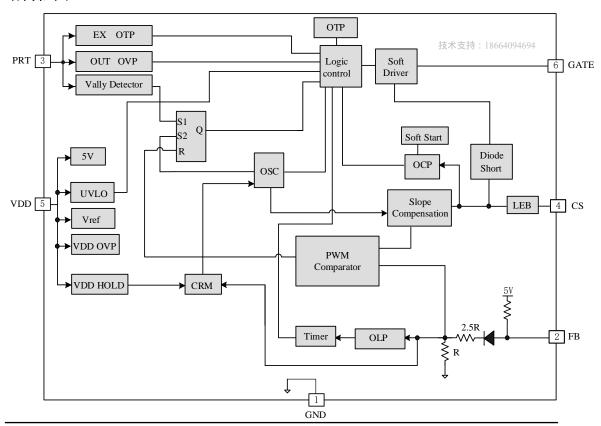

产品概述

CR6891A 是一款高集成度、低待机功耗的 CCM+PFM+QR 混合电流模式 PWM控制器。QR 模式最高工作频率达到 77kHz,CCM 模式下最高工作频率 65kHz,CR6891A 轻载时会降低频率,最低频率22kHz 可避免音频噪声。CR6891A 提供了完整的保护功能,如 cycle-by-cycle 电流限

- 充电器
- 存储设备电源


制、OCP、OTP、VDD_OVP、UVLO等,还可以通 PRT 脚设置过温保护以及输出过压保护。软启动功能可以减少系统启动时 MOSFET 的应力,前沿消隐时间简化了系统应用。通过频率抖动和软驱动电路的设计,降低开关噪声,简化了 EMI 设计。CR6891A 提供 SOT23-6L 的封装。

典型应用


管脚排列

管脚描述

引脚序号	符号	描述
1	GND	地脚。
2	FB	电压反馈脚,和 CS 共同决定输出占空比,同时此脚控制系统工作频率。
3	PRT	多功能引脚。 退磁检测、外置过温保护和输出电压过压保护检测脚。
4	CS	电流检测脚,连接电阻在 MOSFET 的源和地之间检测电感电流
5	VDD	电源脚。
6	GATE	驱动脚,外接功率 MOSFET 的栅极。

结构框图

成都启臣微电子股份有限公司

极限参数

符号	描述	值	单位	
$ m V_{VDD}$	电源电压		-0.3~40	V
$ m V_{FB}$	FB脚输入电压		-0.3~7	V
$ m V_{CS}$	CS脚输入电	-0.3~7	V	
V_{PRT}	PRT脚输入电压		-0.3~7	V
$T_{ m L}$	焊接温度 10s		260	$^{\circ}$
T_{STG}	工作结温范围		-40 ~150	$^{\circ}\!\mathbb{C}$
ESD	人体模式 HBM		2k	V

推荐工作环境

符号	描述	最小~最大	单位
$V_{ m VDD}$	VDD电压	10~33	V
ToA	工作温度	-20~85	$^{\circ}$

电气参数

(TA=25°C 除非特别说明 VDD=18V) 技术支持: 18664094694

符号	参数描述	测试条件	最小	典型	最大	单位
电源部分 (V)	DD Pin)					
I_{ST}	启动电流	UVLO_OFF-1V		3.0	10.0	μΑ
I_{OP}	工作电流	V_{CS} =4.5V, V_{FB} =3V		2.5	3.5	mA
I_{OP_CRM}	CRM 模式工作电流	V_{CS} =0 V , V_{FB} =0.5 V		0.6	0.7	mA
UVLO_OFF	系统启动 VDD 电压		16.6	17.6	18.6	V
UVLO_ON	系统关断 VDD 电压		7.1	7.9	8.7	V
$\mathrm{VDD}_{\mathrm{_HOLD}}$	VDD 维持模式电压			9.6		V
$V_{\mathtt{PULL_UP}}$	GATE 上拉 PMOS 开启 时 VDD 电压			10		V
$\mathrm{VDD}_{\mathrm{OVP}}$	VDD 过压保护		34	36	38	V
反馈部分(FB	Pin)					
A_{VCS}	PWM 输入增益 △FB/ △CS			3.5		V/V
I_{FB}	FB 短路电流	$V_{FB}=0V$		170		μΑ
$ m V_{FB}$	FB 开路电压	V _{FB} =Open		5.1		V
D_{MAX}	最大占空比		77	80	83	%
V _{REF_GREEN}	进入 PFM 时的 FB 电压			2.1		V
V_{CRM_H}	退出 CRM 时的 FB 电压			1.3		V
V_{CRM_L}	进入 CRM 时的 FB 电压			1.2		V
$ m V_{OLP}$	过载保护时 FB 电压			4		V
T_{OLP}	过载保护延迟时间			60		ms
电流检测部分	(CS Pin)					
T_{SS}	软启动时间			2.5		ms
T_{LEB}	前沿消隐时间			300		ns
T_{D_OC}	过流检测延迟时间			90		ns
V_{TH_OC}	0 占空比时过流检测阈 值电压		0.48	0.5	0.52	V
V _{TH_OC_CLAMP}	过流检测箝位电压			0.72		V
内部热保护						
OTP	过热保护检测的温度			150		$^{\circ}$
Hys.	过热保护检测迟滞			30		$^{\circ}$
保护部分(Pi	RT Pin)					
I_{RT}	外置 OTP 输出电流		94	100	106	μΑ
Votp	外置 OTP 阈值保护电压		0.95	1	1.05	V
I _{Output OVP}	输出过压保护电流阈值		168	180	192	uA

<u>CR6891A</u> 高性能CCM+PFM+QR绿色节能PWM控制器

$T_{D_Output_OVP}$	输出过压保护检测延迟 时间			5		Cycles
Gate Pin						
$ m V_{OL}$	输出低电平	I _O =5mA			1	V
V _{OH}	输出高电平	I _O =20mA	6			V
V_{CLAMP}	输出箝位电压			11.2		V
T_R		C _L =2nF		250		ns
$T_{ m F}$		C _L =2nF		60		ns
振荡器部分						
Fosc_max_qr	QR 最大工作频率			77		kHz
Fosc_max_ccm	CCM 模式最大工作频率		60	65	70	kHz
F_{PFM}	PFM 最小频率			22		kHz
ΔF_{VDD}	VDD 对 PWM 频率的影响			1		%
ΔF_{TEMP}	温度对 PWM 频率的影响	-30~100°C		1		%
ΔF_{JITTER}	频率抖动范围		-7		7	%
F _{JITTER}	频率抖动周期			240		Hz

芯片概述

CR6891A 是一款高集成度、低待机功耗的电流模式 PWM 控制器。其在 QR 模式下最大工作频率 77kHz, CCM 模式下最大工作频率 65kHz, CR6891A 轻载时会降低频率,最低频率 22kHz 可避免音频噪声,系统采用 CCM+PFM+QR 混合控制模式以减小系统损耗,达到绿色节能的目的。IC集成了丰富的保护功能,简化了电路系统应用设计。

启动部分

芯片启动电流很小,因此可以用较大的启动电阻,既能满足启动需要,又可以达到减小功率损耗的目的。当 VDD 上的电容电压达到启动电压,IC 启动,以后VDD 就由辅助绕组提供能量。

绿色节能

CR6891A 为多模式 PWM 控制器,在 重载 CCM 模式下,其工作频率为 65kHz, 通过调节脉冲宽度控制输出电压。在重载 QR 模式下时,通过检测谷底检测导通,其 最大工作频率为 77kHz。FB 电压随着负载 减小而减小,当 FB 电压小于设定电压值 VREF_GREEN 时,内部模式控制器进入 PFM, 振荡器的工作频率随着负载的降低而降低, 并最终箝位在 22kHz 附近,当 FB 电压继 续减小时,内部模式控制器进入 CRM 模 式,进一步降低待机功耗。CR6891A 在低 压负载较重时工作在连续导通模式(CCM), 此时每个周期由内部振荡器开启,当负载 降低或者输入电压变高时,系统工作在断 续导通模式(DCM),此时工作模式为受振 荡器控制的谷底导通模式,以此减小开启 时刻的功率损耗,提高中低负载的效率。

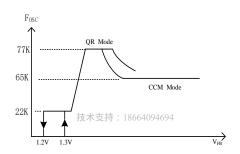


图 1 系统工作频率与 FB 电压示意图

内部同步斜坡补偿

电流模式控制比普通的电压模式控制 具有很多优点,但是同样存在着一些缺点。 特别是当 PWM 占空比大于 50%,整个控 制环路可能变得不稳定,抗干扰性能变差。 CR6891A 内置一个同步的斜坡补偿可以 提高系统的稳定性,防止电压毛刺产生的 次谐波振荡。

多功能复用的 PRT 引脚

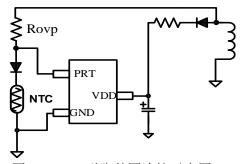


图 2 PRT 引脚外围连接示意图

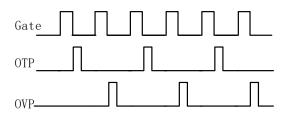


图 3 PRT 保护功能检测方式示意图 CR6891A 提供了精确的外置 OTP 保

护和输出过压保护功能,此功能通过 PRT 脚进行检测。在功率 MOS 管关断时,通过检测从辅助绕组流进 PRT 脚的电流检测输出电压状态,通过调节 PRT 脚上偏电阻可以精确设置输出 OVP 功能。输出 OVP 计算公式如下:

$$I_{PRT} = \frac{V_{AUX} - 0.15}{R_{OVP}} > 180uA \tag{1}$$

在与 OVP 检测间隔的两个 GATE 关断周期, PRT 脚向外流出电流,一个周期的向外流出电流差值为 120uA,另一个周期的向外流出电流为 20uA,这 100uA 的电期向外流出电流为 20uA,这 100uA 的电流差值在温敏电阻上会形成相应的电压,如果该电压触发了外置 OTP 阈值电压,则经过一段时间后触发外置 OTP 保护。OTP设置公式如下:

$$\frac{R_{NTC} \times R_{OVP}}{R_{NTC} + R_{OVP}} \times 100uA < 1V$$

(2)

谷底检测

在功率 MOS 关断后,辅助绕组正端电压由负电压变为正电压,变压器进入退磁阶段,当退磁结束后,辅助绕组正端的电压开始下降并以一定的谐振频率开始振荡,此时通过检测 PRT 引脚的电压来检测谷底,当检测到内部振荡器的下降沿到来后的下一个谷底时,功率 MOS 的下一个导通周期开始。

软启动

VDD 电源启动瞬间, CR6891A 芯片内部都将触发软启动功能,即在 VDD 电压达到 UVLO OFF 以后,在大约 2.5ms 时

间内,峰值电流从 0 上升到最大值峰值电流,以减少电源启动期间功率管电压应力。注意:无论何种保护导致的 VDD 再次启动,都必将触发软启动功能。

前沿消隐 (LEB)

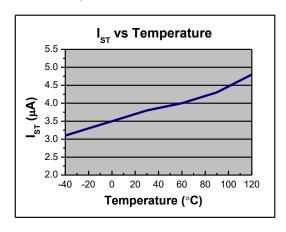
开关管的每次开启不可避免带来开关 毛刺,它通过 R_{CS} 采样后,对内部逻辑电 路带来干扰,引起内部寄存器的误动作。 为了消除开关毛刺的影响,CR6891A 中设 计了 300ns 的前沿消隐电路,它可以代替 传统的外接 RC 滤波电路,简化外围设计。

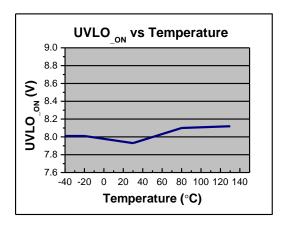
功率输出

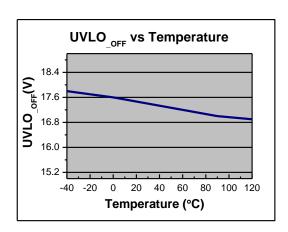
CR6891A 采用特殊的驱动输出,采用 软驱动模式,降低功率 MOSFET 开关噪声, 同时减小了功率 MOSFET 开关损耗。

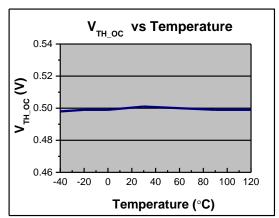
保护功能

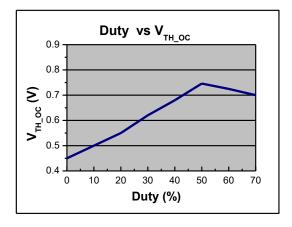
CR6891A 提供了丰富的保护功能,比如 cycle-by-cycle 电流限制、UVLO、输出二极管短路保护、OTP、VDD_OVP 以及输出过压保护等。当芯片检测到触发保护并关断 GATE,系统处于锁定状态,直到 VDD 将到 UVLO_oN 以下系统才能重新启动。

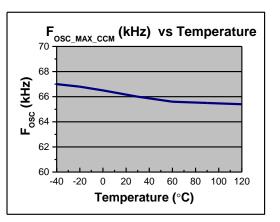

降低 EMI 技术

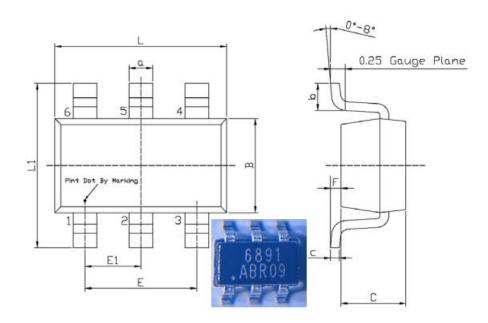

CR6891A 具有频率抖动功能,在±7% 的范围内小幅变化,从而分散了谐波干扰 能量。扩展的频谱降低了窄带 EMI,简化 了系统的设计。



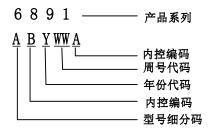

特性曲线


(V_{DD}=18V, T_A=25℃ 除了另作说明)。





封装信息


SOT23-6L

州 旦	毫米			
符号	最小	最大		
L	2.82	3.02		
В	1.50	1.70		
С	0.90	1.30		
L1	2.60	3.00		
Е	1.80	2.00		
E1	0.85	1.05		
a	0.35	0.50		
c	0.10	0.20		
b	0.35	0.55		
F	0	0.15		

印章信息

订购信息

产品型号	封装类型	包装材质	一盘	一盒	一箱
CR6891A	SOT23-6L	编带	3000	30000	120000

SOT-23-6L 封装产品最小订购量为 30000 片,即一盒的芯片数量。

产品储存条件

项目	数值
储存温度	0-40℃
储存湿度	30-70%RH
湿气敏感度等级	3

重要声明

启臣保留对本规格书的修正权, 恕不另行通知!客户在下单前应获取产品的最新资料, 并验证其是否是完整以及最新版本。

任何半导体产品在特定条件下都有失效或发生故障的可能,买方使用本产品时,应对自己的设计及应用负责,遵守安全标准并采取安全措施,以保护人身及财产安全。