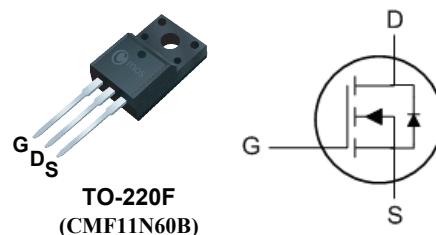


General Description

These N-Channel enhancement mode power field effect transistors are produced using advanced technology. This latest technology has been especially designed to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power Supplier, active power factor correction based on Half-Bridge topology.

Features

- Originative New Design
- 100% avalanche tested
- Very Low Intrinsic Capacitances
- Fast switching
- Improved dv/dt capability
- 11A, 600V, RDS(on) = 0.66Ω @VGS = 10 V


Product Summary

BVDSS	RDS(on)	ID
600V	0.66Ω	11A

Applications

- Charger
- Adaptor
- Power Supply
- Electrodeless lamp

TO-220F Pin Configuration

Absolute Maximum Ratings

T_C = 25°C unless otherwise noted

Symbol	Parameter	Rating	Units
V _{DSS}	Drain-Source Voltage	600	V
I _D	Drain Current * - Continuous (T _C = 25°C)	11	A
	- Continuous (T _C = 100°C)	7	A
I _{DM}	Drain Current - Pulsed ¹	44	A
V _{GSS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulsed Avalanche Energy ⁴	600	mJ
E _{AR}	Repetitive Avalanche Energy	18.2	mJ
dv/dt	Peak Diode Recovery dv/dt ³	4.5	V/ns
P _D	Power Dissipation (T _C = 25°C)	50	W
	- Derate above 25°C	0.39	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C

* Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Parameter	Rating	Units
R _{θJC}	Thermal Resistance, Junction-to-Case Max ¹	2.55	°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient Max ¹	62.5	°C/W

Electrical Characteristic
 $T_C = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
--------	-----------	-----------------	-----	-----	-----	-------

Off Characteristics

BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}$, $I_D = 250 \mu\text{A}$	600	--	--	V
$BV_{DSS} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C	--	0.67	--	$\text{V}/^\circ\text{C}$
I_{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 600 \text{ V}$, $V_{GS} = 0 \text{ V}$	--	--	1	μA
		$V_{DS} = 480 \text{ V}$, $T_C = 125^\circ\text{C}$	--	--	10	
I_{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}$, $V_{DS} = 0 \text{ V}$	--	--	100	nA
I_{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}$, $V_{DS} = 0 \text{ V}$	--	--	-100	nA

On Characteristics

$V_{GS(\text{th})}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$	3.0	--	4.5	V
$R_{DS(\text{on})}$	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}$, $I_D = 5.5 \text{ A}$	--	0.55	0.66	Ω

Dynamic Characteristics

C_{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0 \text{ V}$	--	2600	--	pF
C_{oss}	Output Capacitance	$f = 1.0 \text{ MHz}$	--	6.2	--	pF
C_{rss}	Reverse Transfer Capacitance		--	190	--	pF

Switching Characteristics

$t_{d(on)}$	Turn-On Delay Time	$V_{DS} = 300 \text{ V}$, $I_D = 11 \text{ A}^3$ $R_G = 25 \Omega$, $V_{GS} = 10 \text{ V}$	--	25	--	ns
t_r	Turn-On Rise Time		--	45	--	ns
$t_{d(off)}$	Turn-Off Delay Time		--	170	--	ns
t_f	Turn-Off Fall Time		--	55	--	ns
Q_g	Total Gate Charge	$V_{DS} = 480 \text{ V}$, $I_D = 11 \text{ A}^3$ $V_{GS} = 10 \text{ V}$	--	35	--	nC
Q_{gs}	Gate-Source Charge		--	6.5	--	nC
Q_{gd}	Gate-Drain Charge		--	11	--	nC

Drain-Source Diode Characteristics and Maximum Ratings

I_S	Maximum Continuous Drain-Source Diode Forward Current	--	--	11	A	
I_{SM}	Maximum Pulsed Drain-Source Diode Forward Current	--	--	44	A	
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}$, $I_S = 11 \text{ A}$	--	--	1.4	V
t_{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}$, $I_F = 11 \text{ A}^3$ $dI_F / dt = 100 \text{ A}/\mu\text{s}$	--	430	--	ns
Q_{rr}	Reverse Recovery Charge		--	4	--	C

Notes:

1. Pulse width is based on $R_{\theta JC}$ & $R_{\theta JA}$ and the maximum allowed junction temperature of 150°C .
2. Pulse test: pulse width $\leq 300\text{us}$, duty cycle $\leq 2\%$, pulse width limited by junction temperature $T_{J(\text{MAX})} = 150^\circ\text{C}$.
3. $I_{SD} \leq 11\text{A}$, $dI/dt \leq 200\text{A}/\mu\text{s}$, $V_{DD} \leq BV_{DSS}$, $R_G = 25\Omega$, Starting $T_J = 25^\circ\text{C}$
4. $L = 9\text{mH}$, $I_{AS} = 11.5\text{A}$, $V_{DD} = 100\text{V}$, $R_G = 25\Omega$, Starting $T_J = 25^\circ\text{C}$

This product has been designed and qualified for the consumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserves the right to improve product design, functions and reliability without notice.