

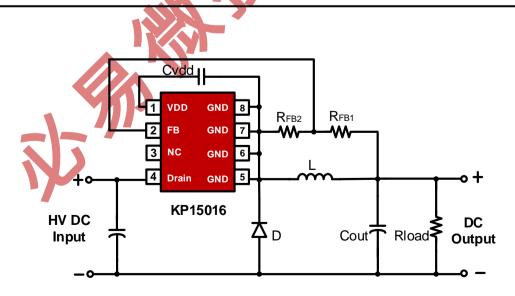
高性能、低成本离线式 PWM 控制功率开关

主要特点

- 集成 700V 高压 MOSFET 和高压启动电路
- 多模式控制、无异音工作
- 支持反激、降压和升降压拓扑
- 支持超低压输入 (>20V)
- 空载功耗低于 100mW
- 支持最高 40kHz 开关频率
- 良好的线性调整率和负载调整率
- 集成软启动电路
- 内部保护功能:
 - 过载保护 (OLP)
 - 逐周期电流限制 (OCP)
 - 异常过流保护 (AOCP)
 - 输出过压保护 (OVP)
 - 过温保护 (OTP)
- 封装类型 SOP-8

典型应用

● 智能照明

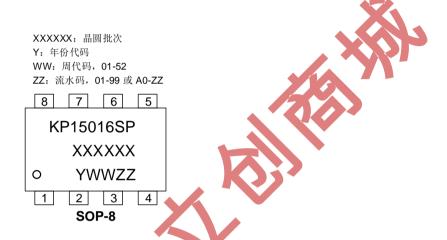

典型应用电路

产品描述

KP15016 是一款高性能低成本 PWM 控制功率开关,适用于离线式小功率降压型应用场合,外围电路简单、器件个数少。同时产品内置高耐压 MOSFET 可提高系统浪涌耐受能力。

与传统的 PWM 控制器不同,KP15016 内部无固定时钟驱动 MOSFET,系统开关频率随负载变化可实现自动调节。同时芯片采用了多模式 PWM 控制技术,有效简化了外围电路设计,提升线性调整率和负载调整率并消除系统工作中的可闻噪音。此外,芯片内部峰值电流检测阈值可跟随实际负载情况自动调节,可以有效降低空载情况下的待机功耗。

KP15016 集成有完备的带自恢复功能的保护功能: VDD 欠压保护、逐周期电流限制、异常过流保护、 输出过压保护、过热保护、过载保护和 VDD 过压 保护等。



管脚封装

SOP-8

产品标记

管脚功能描述

管脚	名称	I/O	描述
1	VDD	Р	芯片供电管脚。典型应用中 VDD 电容推荐采用 1uF 陶瓷电容
2	FB	ı	反馈输入管脚
3	NC	/	非功能管脚,应用中悬空
4	DRAIN	Р	内部高压功率开关输入端
5,6,7,8	GND	P	芯片的参考地

订货信息

型号	描述		
KP15016SPA	SOP-8,无铅、编带盘装,4000 颗/卷		

极限参数 (备注 1)

参数	数值	单位
Drain 管脚	-0.3-700	V
VDD 管脚	-0.3-9	V
VDD 箝位电流	10	mA
FB管脚	-0.3-9	V
封装热阻结到环境 (SOP-8)	165	°C/W
芯片工作结温	160	.€C
储藏温度	-65 to 150	°C
管脚温度 (焊接 10 秒)	260	°C
ESD 能力 (人体模型)	5000	V

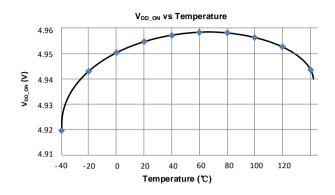
推荐工作条件

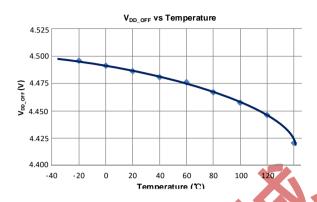
参数		数值	单位
工作环境温度		-40 to 85	°C
满载工作频率	Λ	30 to 40	kHz

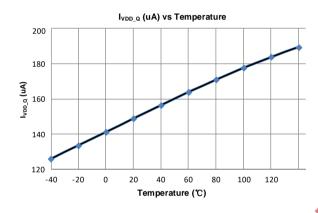
电气参数 (无特殊注明,环境温度为 25 ℃)

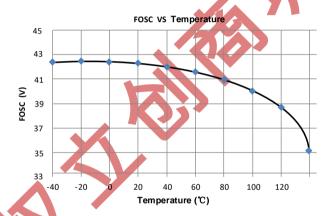
符号	参数	测试条件	最小	典型	最大	单位
高压 MOSFE	T 部分 (Drain 管脚)					
I _{HV1}	高压供电电流 1	Drain=700V, VDD=0V		0.6		mA
I _{HV2}	高压供电电流 2	Drain=700V, VDD=4V		5		mA
HV_leakage	高压漏电电流	Drain=700V, VDD=8.5V		9	20	uA
V_{BR}	高压 MOSFET 击穿电压		700			V
R _{dson}	导通阻抗			17		ohm
供电部分 (VDD 管脚)						
V _{DD_ON}	VDD 启动电压		4.8	5	5.2	V
V _{DD_OFF}	VDD 欠压保护电压			4.1		V
V _{CLAMP}	VDD 箝位电压	I _{CLAMP} =2mA		9		V
I _{VDD_Op}	VDD 工作电流	Fsw=40kHz		240	300	uA

高性能、低成本离线式 PWM 控制功率开关

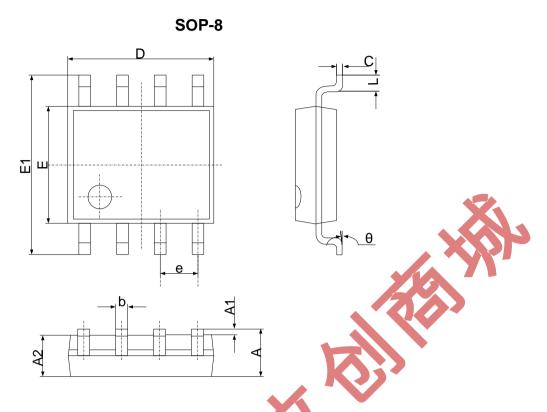

	I	T	ı				
I _{VDD_Q}	VDD 静态电流	无开关动作		150	190	uA	
反馈部分 (FB 管脚)							
V _{FB_REF}	内部差分放大器输入端基准		1.75	1.78	1.81	V	
V _{FB_OVP}	输出过压保护 (OVP) 检测阈 值			2.7		V	
N _{FB_OVP}	输出过压保护 (OVP) 检测延迟开关周期			7			
V _{FB_OLP}	输出过载保护 (OLP) 检测阈值			1.66		V	
T _{D_OLP}	过载保护延迟时间			130		ms	
电流检测输入	电流检测输入部分						
T _{LEB}	前沿消隐			380		ns	
T _{D_OCP}	过流比较器延时			50		ns	
I _{OCP}	逐周期过流保护阈值			500		mA	
IAOCP /IOCP	AOCP与 OCP 比例			1.33			
振荡器部分			K				
T _{OFF_min_norm}	典型最短关断时间	稳态工作条件下	21	24	27	us	
T _{OFF_max nom}	典型最长关断时间			2.3		ms	
T _{OFF_max_FDR}	动态响应模式下最长关断时间	\wedge		420		us	
T _{ON_max}	最长导通时间	X-	26	37	48	us	
Tss	内部软启动时间			3		ms	
T _{Auto_Recovery}	自动恢复延迟时间			1.3		S	
过热保护部分							
T _{SD}	过热保护阈值			155		° C	


备注 1: 超出列表中"极限参数"可能会对器件造成永久性损坏。极限参数为应力额定值。在超出推荐的工作条件和应力的情况下,器件可能无法正常工作,所以不推荐让器件工作在这些条件下。过度暴露在高于推荐的最大工作条件下,可能会影响器件的可靠性。





参数特性曲线



封装尺寸

符号	尺寸 (毫米)		尺寸 (英寸)		
11) 🕏	最小	最大	最小	最大	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270 (中心到中心)		0.050 (中心到中心)		
L	0.400	1.270	0.016	0.050	
θ	00	8°	00	8°	

声明

必易微确保以上信息准确可靠,同时保留在不发布任何通知的情况下对以上信息进行修改的权利。 使用者在 将必易微的产品整合到任何应用的过程中,应确保不侵犯第三方知识产权;未按以上信息所规定的应用条件 和参数进行使用所造成的损失,必易微不负任何法律责任。