

N-Channel Enhancement Mode Field Effect Transistor

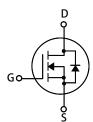
General Description

These miniature surface mount MOSFETs utilize High Cell Density process. Low rDS(on) assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are power switch, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

Features

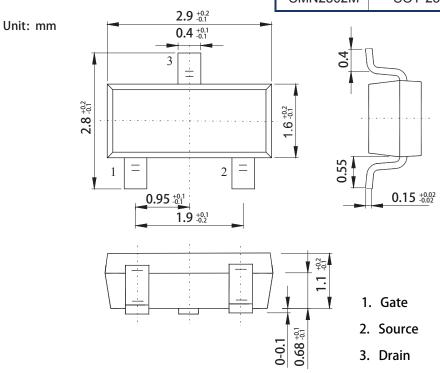
- RDS(ON)<35mΩ @ VGS=4.5V
- RDS(ON)<45mΩ @ VGS=2.5V
- SOT-23-3L Package

Product Summary


BVDSS	RDSON	ID
20V	$35 m\Omega$	5A

Applications

- DC-DC converters
- Load Switch
- Power Management in Notebook Computer
- Portable Equipment and Battery Powered Systems


SOT-23-3L Pin Configuration

SOT	-23	-31

Туре	Package	Marking		
CMN2302M	SOT-23-3L	A2		

N-Channel Enhancement Mode Field Effect Transistor

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	20	V	
V_{GS}	Gate-Source Voltage	±10	V	
I _D @T _a =25℃	Continuous Drain Current	5	Α	
I _{DM}	Pulsed Drain Current	15	А	
P _D @T _a =25℃	Total Power Dissipation	1	W	
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	150	$^{\circ}$	

Thermal Data

Symbol	Parameter	Rating	Unit	
R _{θJA}	Thermal Resistance Junction-ambient	100	°C/W	

Electrical Characteristics (T_a =25 $^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	20			V
D	Static Drain-Source On-Resistance	V _{GS} =4.5V , I _D =4.5A			35	m 0
R _{DS(ON)}	Static Diain-Source On-Resistance	V _{GS} =2.5V , I _D =3.5A			45	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	0.5		1.5	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =16V, V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±10V , V _{DS} =0V			±100	nA
Qg	Total Gate Charge	I _D =1A		8.8		
Q _{gs}	Gate-Source Charge	V _{DS} = 10V		1.2		nC
Q_{gd}	Gate-Drain Charge	V _{GS} = 4.5V		2.5		
T _{d(on)}	Turn-On Delay Time	- V _{DS} =10V		12		
Tr	Rise Time			18		ns
$T_{d(off)}$	Turn-Off Delay Time	I _D =3.5A		45		113
T _f	Fall Time	R_{GEN} =10 Ω		30		
C _{iss}	Input Capacitance			600		
C _{oss}	Output Capacitance	V_{DS} =10V , V_{GS} =0V , f=1MHz		120		pF
C _{rss}	Reverse Transfer Capacitance			80		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =0.75A			1.5	V

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.