

General Description

The CMSA90N03 is a high performance trench N-channel MOSFET which utilizes extremely high cell density to provide low Rdson and gate charge characteristics. It is ideally suited to support synchronous buck converter applications.

Product Summary

BVDSS	RDS_{ON}	ID
30V	3.8mΩ	90A

Applications

- On board power for server
- Power management for high performance computing
- High-efficiency DC-DC converters
- Synchronous rectification

DFN-8 5x6 Pin Configuration**Features**

- Fast switching
- Super Low Gate Charge
- 100% avalanche tested
- RoHS Compliant

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	± 20	V
$I_D @ T_c = 25^\circ C$	Continuous Drain Current	90	A
I_{DM}	Pulsed Drain Current	270	A
EAS	Single Pulse Avalanche Energy ¹	750	mJ
$P_D @ T_c = 25^\circ C$	Total Power Dissipation	50	W
T_{STG}	Storage Temperature Range	-55 to 150	°C
T_J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	---	30	°C/W
$R_{\theta JC}$	Thermal Resistance Junction -Case	---	2.5	°C/W

Electrical Characteristics ($T_J=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{\text{GS}}=0\text{V}$, $I_{\text{D}}=250\mu\text{A}$	30	---	---	V
$R_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$V_{\text{GS}}=10\text{V}$, $I_{\text{D}}=20\text{A}$	---	---	3.8	$\text{m}\Omega$
		$V_{\text{GS}}=4.5\text{V}$, $I_{\text{D}}=20\text{A}$	---	---	5.5	
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{\text{GS}}=V_{\text{DS}}$, $I_{\text{D}}=250\mu\text{A}$	1	---	2.5	V
I_{DSS}	Drain-Source Leakage Current	$V_{\text{DS}}=24\text{V}$, $V_{\text{GS}}=0\text{V}$	---	---	1	μA
I_{GSS}	Gate-Source Leakage Current	$V_{\text{GS}}=\pm 20\text{V}$, $V_{\text{DS}}=0\text{V}$	---	---	± 100	nA
g_{fs}	Forward Transconductance	$V_{\text{DS}}=5\text{V}$, $I_{\text{D}}=15\text{A}$	---	60	---	S
R_{g}	Gate Resistance	$V_{\text{DS}}=0\text{V}$, $V_{\text{GS}}=0\text{V}$, $f=1\text{MHz}$	---	5.5	---	Ω
Q_{g}	Total Gate Charge	$V_{\text{DS}}=15\text{V}$, $I_{\text{D}}=20\text{A}$	---	30	---	nC
Q_{gs}	Gate-Source Charge		---	5	---	
Q_{gd}	Gate-Drain Charge		---	15	---	
$T_{\text{d(on)}}$	Turn-On Delay Time	$V_{\text{DS}}=15\text{V}$, $V_{\text{GS}}=10\text{V}$, $R_{\text{G}}=3.3\Omega$	---	12	---	ns
T_{r}	Rise Time		---	8	---	
$T_{\text{d(off)}}$	Turn-Off Delay Time		---	50	---	
T_{f}	Fall Time		---	23	---	
C_{iss}	Input Capacitance	$V_{\text{DS}}=25\text{V}$, $V_{\text{GS}}=0\text{V}$, $f=1\text{MHz}$	---	3400	---	pF
C_{oss}	Output Capacitance		---	415	---	
C_{rss}	Reverse Transfer Capacitance		---	350	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{S}	Diode continuous forward current	$V_{\text{G}}=V_{\text{D}}=0\text{V}$, Force Current	---	---	90	A
$I_{\text{S,pulse}}$	Diode pulse current		---	---	270	A
V_{SD}	Diode Forward Voltage	$V_{\text{GS}}=0\text{V}$, $I_{\text{F}}=20\text{A}$, $T_J=25^\circ\text{C}$	---	---	1.2	V

Notes

1. The test condition is $V_{\text{DS}}=15\text{V}$, $V_{\text{GS}}=10\text{V}$, $L=0.5\text{mH}$, $I_{\text{D}}=55\text{A}$.

This product has been designed and qualified for the consumer market.
 Cmos assumes no liability for customers' product design or applications.
 Cmos reserves the right to improve product design ,functions and reliability without notice.