

CA-IS382x 高速双通道数字隔离器

1. 产品特性

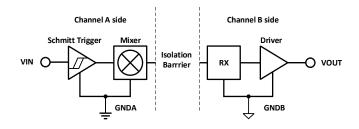
- 信号传输速率: DC to 150Mbps
- 宽电源电压范围: 2.5V to 5.5V
- 宽温度范围: -40°C to 125°C
- 无需启动初始化
- 默认输出高电平和低电平选项
- 优异的电磁抗扰度
- 高 CMTI: ±150kV/us (典型值)
- 低功耗, (典型值):
 - 电流为 1.5mA/通道(@5V, 1Mbps)
 - 电流为 6.6mA/通道(@5V, 100Mbps)
- 精确时序(典型值)
 - 12ns 传播延迟
 - 1ns 脉冲宽度失真
 - 2ns 传播延迟偏差
 - 5ns 最小脉冲宽度
- 高达 5.7kV_{RMS} 的隔离电压(宽体封装)
- 高达 7.5kV_{RMS} 的隔离电压(超宽体封装)
- ESD: ±8kV HBM
- 隔离栅寿命: >40 年
- 施密特触发器输入
- 宽体 SOIC8(G)封装,宽体 SOIC16(W)和超宽体 SOIC16(WW),符合 RoHS 标准

2. 应用

- 工业自动化
- 电机控制
- 医疗电子
- 隔离开关电源
- 太阳能逆变器
- 隔离 ADC, DAC

3. 概述

CA-IS382x 是一款高性能 2 通道数字隔离器具有精确的 时序特性和低电源损耗。 在隔离 CMOS 数字 I/O 时, CA-IS382x 器件可提供高电磁抗扰度和低辐射。所有器件版本均具有施密特触发器输入,可实现高抗噪性能。


每条隔离通道的逻辑输入和输出缓冲器均由二氧化硅 (SiO₂) 绝缘栅隔离。CA-IS3820 器件具有两个前向双通道,CA-IS3821 一个前向一个反向两个通道,CA-IS3822 和CA-IS3821 通道相反,具有一个反向一个前向两个通道。所有设备都具有故障安全模式选项。 如果输入侧电源掉电或信号丢失,对于后缀为 L 的设备,默认输出为低,对于带有后缀 H 的设备,默认输出为高。

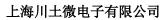
CA-IS382x 器件具有高绝缘能力,有助于防止数据总线或其他电路上的噪声和浪涌进入本地接地端,从而干扰或损坏敏感电路。 高 CMTI 能力有望保证数字信号的正确传输。 CA-IS382x 器件采用 8 脚宽体 SOIC,16 脚宽体 SOIC 封装和 16 脚超宽体 SOIC 封装。宽体封装的产品绝缘耐压均高达 5.7kV_{RMS},超宽体封装的产品绝缘耐压能达到 7.5kV_{RMS}。

器件信息

零件号	封装	封装尺寸(标称值)
CA-IS3820	SOIC8-WB(G)	5.85 mm ×7.50 mm
CA-IS3821	SOIC16-WB(W)	10.30mm ×7.50 mm
CA-IS3822	SOIC16- WWB(WW)	10.30 mm × 14.00 mm

简化通道结构图

通道 A 和 B 被隔离电容隔开。

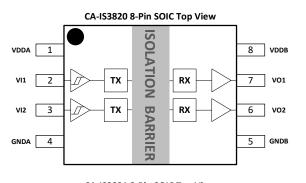

GNDA 和 GNDB 分别连接 A 侧信号和 B 侧电源隔离接地。

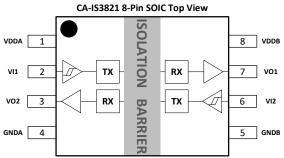
4. 订购指南

表 4-1 有效订购零件编号

型号	输入通道数 A 侧	输入通道数 B 侧	故障安全输出 状态	额定耐压 (kV _{rмs})	输出使能	封装
CA-IS3820LG	2	0	低	5.7	No	SOIC8-WB
CA-IS3820LW	2	0	低	5.7	No	SOIC16-WB
CA-IS3820LWW	2	0	低	7.5	Yes	SOIC16-WWB
CA-IS3820HG	2	0	高	5.7	No	SOIC8-WB
CA-IS3820HW	2	0	高	5.7	No	SOIC16-WB
CA-IS3820HWW	2	0	高	7.5	Yes	SOIC16-WWB
CA-IS3821LG	1	1	低	5.7	No	SOIC8-WB
CA-IS3821LW	1	1	低	5.7	No	SOIC16-WB
CA-IS3821LWW	1	1	低	7.5	Yes	SOIC16-WWB
CA-IS3821HG	1	1	高	5.7	No	SOIC8-WB
CA-IS3821HW	1	1	高	5.7	No	SOIC16-WB
CA-IS3821HWW	1	1	高	7.5	Yes	SOIC16-WWB
CA-IS3822LG	1	1	低	5.7	No	SOIC8-WB
CA-IS3822LW	1	1	低	5.7	No	SOIC16-WB
CA-IS3822LWW	1	1	低	7.5	Yes	SOIC16-WWB
CA-IS3822HG	1	1	高	5.7	No	SOIC8-WB
CA-IS3822HW	1	1	高	5.7	No	SOIC16-WB
CA-IS3822HWW	1	1	高	7.5	Yes	SOIC16-WWB

目录


1.	产品特	恃性.		1
2.	应用.			1
3.	概述.			1
4.	订购	指南.		2
5.	修订	历史.		3
6.	引脚	功能排	描述	4
7.	产品	蚬格.		7
	7.1.		↑最大额定值 ¹	
	7.2.	ESD	额定值	7
	7.3.	建议	〈工作条件	7
	7.4.	热量	t信息	8
	7.5.	额定	[功率	8
	7.6.	隔离	5特性	9
	7.7.	安全	:相关认证	10
	7.8.	电气	〔特性	11
	7.8	3.1.	$V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$	
	7.8	3.2.	$V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$	
	7.8	3.3.	$V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$	11
	7.9.	电源	〔电流特性	12
	7.9).1.	$V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$	12


	7	7.9.2.	$V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C} \dots$. 13
	7	7.9.3.	$V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C} \dots$. 14
	7.10.	时序	序特性	15
	7	7.10.1.	$V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$. 15
	7	7.10.2.	$V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$	15
	7	7.10.3.	$V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$. 15
8.	参数	女测量 作	盲息	16
9.	详组	田说明.		18
	9.1.	工作	F原理	18
	9.2.	功能	b框图	18
	9.3.	真值	5表	19
10.		应用甲	电路	20
11.		封装信	言息	21
	11.1.	SOIC	C8 宽体外形尺寸	21
	11.2.	SOIC	C16 宽体外形尺寸	22
	11.1.	SOIC	C16 超宽体外形尺寸	23
12.		焊接係	言息	24
13.		编带值	意息	25
14.		重要詞	^当 明	26

5. 修订历史

修订版本号	修订内容	页码
Version1.00	NA	NA
Version1.01	更新 UL 认证信息	10
Version1.02	更新 UL,TUV 认证信息	10
Version1.03	更新隔离特性	9
Version1.04	1. 更新 VDE 认证信息	10
	2. 更新编带信息	24
Version1.05	更新隔离特性	9

6. 引脚功能描述

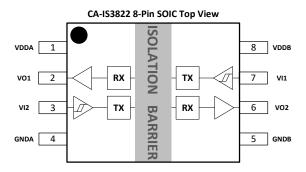


图 6-1 SOIC8 脚宽体封装顶部视图

表 6-1 CA-IS382x SOIC8 引脚功能描述

		* '	*****
引脚名称	SOIC8 引脚编号	类型	描述
V_{DDA}	1	电源	A侧电源电压
VI1/VO1	2	逻辑输入/输出	CA-IS3820/21 A 侧逻辑输入,CA-IS3822 A 侧逻辑输出
VI2/VO2	3	逻辑输入/输出	CA-IS3820/22 A 侧逻辑输入,CA-IS3821 A 侧逻辑输出
GNDA	4	地	A 侧接地基准点
GNDB	5	地	B侧接地基准点
VI2/VO2	6	逻辑输入/输出	CA-IS3821 B 侧逻辑输入,CA-IS3820/22 B 侧逻辑输出
VI1/VO1	7	逻辑输入/输出	CA-IS3822 B 侧逻辑输入,CA-IS3820/21 B 侧逻辑输出
V_{DDB}	8	电源	B 侧电源电压

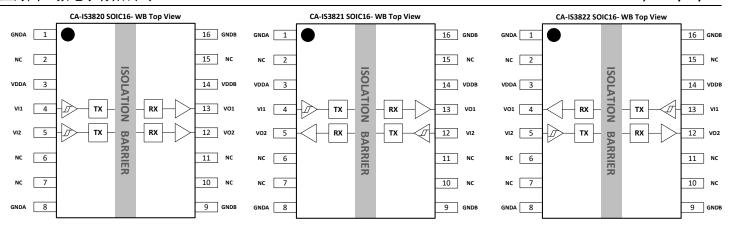


图 6-2 CA-IS382x SOIC16-WB 宽体封装顶部视图

表 6-2 CA-IS382x SOIC16-WB 宽体引脚功能描述

	V 0-2 CA-13302X 301CIO-WD 処件 打牌为品油定						
引脚名称	SOIC16-WB 引脚编号	类型	描述				
GNDA	1	地	A 侧接地基准点				
NC	2	NC	无内部连接				
VDDA	3	电源	A 侧电源电压				
VI1/VO1	4	逻辑输入/输出	CA-IS3820/21 A 侧逻辑输入,CA-IS3822 A 侧逻辑输出				
VI2/VO2	5	逻辑输入/输出	CA-IS3820/22 A 侧逻辑输入,CA-IS3821 A 侧逻辑输出				
NC ¹	6	NC	无内部连接				
NC	7	NC	无内部连接				
GNDA	8	地	A 侧接地基准点				
GNDB	9	地	B侧接地基准点				
NC	10	NC	无内部连接				
NC	11	NC	无内部连接				
VI2/VO2	12	逻辑输入/输出	CA-IS3821 B 侧逻辑输入/CA-IS3820/22/ B 侧逻辑输出				
VI1/VO1	13	逻辑输入/输出	CA-IS3822 B 侧逻辑输入/ CA-IS3820/21 B 侧逻辑输出				
VDDB	14	电源	B 侧电源电压				
NC	15	NC	无内部连接				
GNDB	16	地	B侧接地基准点				
备注:							

1. 无连接。 这些引脚没有内部连接。 它们可以悬空,连接到 VDD 或连接到 GND。

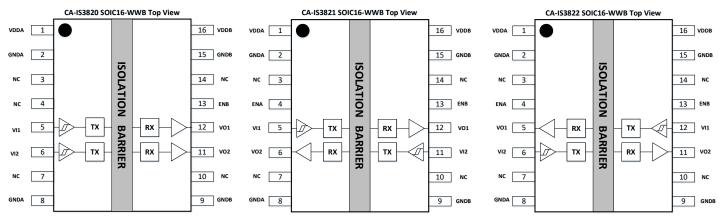


图 6-3 CA-IS382x SOIC16-WWB 超宽体封装顶部视图

表 6- 3 CA-IS382x SOIC16-WWB 超宽体引脚功能描述

引脚名称	SOIC16-WWB 引脚编号	类型	描述
VDDA	1	电源	A 侧电源电压
GNDA	2	地	A 侧接地基准点
NC	3	NC	无内部连接
ENA/NC	4	输出使能/NC	CA-IS3821/22 A 测输出使能引脚。对于 CA-IS3820 而言,无内部连接。
VI1/VO1	5	逻辑输入/输出	CA-IS3820/21 A 侧逻辑输入,CA-IS3822 A 侧逻辑输出
VI2/VO2	6	逻辑输入/输出	CA-IS3820/22 A 侧逻辑输入,CA-IS3821 A 侧逻辑输出
NC ¹	7	NC	无内部连接
GNDA	8	地	A 侧接地基准点
GNDB	9	地	B侧接地基准点
NC	10	NC	无内部连接
VI2/VO2	11	逻辑输入/输出	CA-IS3821 B 侧逻辑输入,CA-IS3820/22 B 侧逻辑输出
VI1/VO1	12	逻辑输入/输出	CA-IS3822 B 侧逻辑输入,CA-IS3820/21 B 侧逻辑输出
ENB	13	输出使能	B侧输出使能
NC	14	NC	无内部连接
GNDB	15	地	B侧接地基准点
VDDB	16	电源	B 侧电源电压
备注:			

^{1.} 无连接。这些引脚没有内部连接。它们可以悬空,连接到 V_{DD} 或连接到 GND。

7. 产品规格

7.1. 绝对最大额定值 1

	参数	最小值	最大值	单位
V _{DDA} , V _{DDB}	电源电压 2	-0.5	7.0	V
V _{in}	输入电压 Vix,ENA,ENB	-0.5	$V_{DD} + 0.5^3$	V
I ₀	输出电流	-20	20	mA
T _J	结温		150	°C
T _{STG}	存储温度范围	-65	150	°C

备注:

- 1. 等于或超出上述绝对最大额定值可能会导致产品永久性损坏。这只是额定最值,并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下,推断产品能否正常工作。长期在超出最大额定值条件下工作会影响产品的可靠性。
- 2. 除差分 I/O 总线电压以外的所有电压值,均相对于本地接地端子(GNDA或GNDB),并且是峰值电压值。
- 3. 最大电压不得超过 7 V。

7.2. ESD 额定值

		数值	单位
V _{ESD} 静电放电	人体模型 (HBM), 根据 ANSI/ESDA/JEDEC JS-001,同侧引脚对同侧 GND。	±8000	V
V _{ESD} 静电放电	组件充电模式(CDM), 根据 JEDEC specification JESD22-C101, 所有引脚。	±2000	V

7.3. 建议工作条件

	参数		最小值	典型值	最大值	单位	
V _{DDA} , V _{DDB}	电源电压	电源电压		3.3	5.5	V	
V _{DD} (UVLO+)	NLO+) V _{DD} 电源电压上升时的欠压阈值			2.24	2.375	V	
V _{DD} (UVLO-)	V _{DD} 电源电压下降时的欠压阈值		1.88	2.10	2.325	V	
V _{HYS} (UVLO)	V _{DD} 迟滞欠压阈值		70	140	250	mV	
			-4				
I _{OH}	高电平输出电流	$V_{DDO} = 3.3V$	-2			mA	
		$V_{DDO} = 2.5V$	-1				
	K电平输出电流 V _{DDO} = 5V V _{DDO} = 3.3V V _{DDO} = 2.5V	$V_{DDO} = 5V$			4		
I _{OL}		低电平输出电流	$V_{DDO} = 3.3V$			2	mA
		$V_{DDO} = 2.5V$			1		
V _{IH}	输入阈值逻辑高电平		2.0			V	
V _{IL}	输入阈值逻辑低电平				0.8	V	
DR	信号传输速率		0		150	Mbps	
T _A	环境温度		-40	27	125	°C	
备注:			•			•	
1. V _{DDO} = ‡	俞出侧 V _{DD}						

7.4. 热量信息

	热量表	CA-IS382x				
SOIC8-WB(G) SOIC16-WB(W)				SOIC16-WWB(WW)	单位	
$R_{\theta JA}$	IC 结至环境的热阻	92.3	83.4	83.4	°C/W	

7.5. 额定功率

	参数	测试条件	最小值	典型值	最大值	单位
CA-IS38	820					
P_D	最大功耗	V V 55V C 15 **5			240	mW
P _{DA}	A 侧的最大功耗	────────────────────────────────────			30	mW
P _{DB}	B侧的最大功耗				210	mW
CA-IS38	821	•				
P_D	最大功耗	V V 55V C 15 **5			240	mW
P _{DA}	A 侧的最大功耗	————— V _{DDA} = V _{DDB} = 5.5 V, C _L = 15 pF, ————————————————————————————————————			120	mW
P _{DB}	B侧的最大功耗				120	mW
CA-IS38	822	•				
P _D	最大功耗	V -V -FFVC-1FmF		•	240	mW
P _{DA}	A 侧的最大功耗	————— V _{DDA} = V _{DDB} = 5.5 V, C _L = 15 pF, ————— T _I = 150°C, 输入 75MHz 50% 占空比方波			120	mW
P _{DB}	B侧的最大功耗				120	mW

7.6. 隔离特性

	参数 测试条件		数	:值	单位
	少 数		G/W	ww	平位
CLR	外部气隙(间隙)1	测量输入端至输出端,隔空最短距离	8	15	mm
CPG	外部爬电距离 1	测量输入端至输出端,沿壳体最短距离	8	15	mm
DTI	隔离距离	最小内部间隙 (内部距离)	2	28	μm
CTI	相对漏电指数	DIN EN 60112 (VDE 0303-11); IEC 60112	>6	500	V
	材料组	依据 IEC 60664-1		I	
		额定市电电压≤ 300 V _{RMS}	I-IV	I-IV	
	IEC 60664-1 过压类别	额定市电电压≤ 600 V _{RMS}	I-IV	I-IV	
		额定市电电压 ≤ 1000 V _{RMS}	1-111	I-IV	
DIN V VI	DE V 0884-17:2021-10 ²				
V _{IORM}	最大重复峰值隔离电压	交流电压(双极)	2121	2828	V_{PK}
.,	日十二 <i>比</i> 原文九厂	交流电压; 时间相关的介质击穿 (TDDB) 测试	1500	2000	V _{RMS}
V _{IOWM}	最大工作隔离电压	直流电压	2121	2828	V _{DC}
		V _{TEST} = V _{IOTM} ,			
١.,	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	t = 60 s (认证);	0.0	200	.,
V _{IOTM}	最大瞬态隔离电压	$V_{TEST} = 1.2 \times V_{IOTM}$	8000		V_{PK}
		t=1s(100%产品测试)			
V	最大浪涌隔离电压3	测试方法 依据 IEC 60065, 1.2/50 μs 波形,	2000		
V _{IOSM}	取人很拥쪰呙电压。	V _{TEST} = 1.6 × V _{IOSM} (认证)	80	000	V_{PK}
		方法 a,输入/输出安全测试子类 2/3 后,			
		$V_{ini} = V_{IOTM}$, $t_{ini} = 60 s$;	≤	<u>5</u>	
		$V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10 \text{ s}$			
		方法 a, 环境测试子类 1 后,			
α.	表征电荷 4	$V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$;	≤	5	рC
q _{pd}	农血电阀	$V_{pd(m)} = 1.6 \times V_{IORM}, t_m = 10 s$			ρC
		方法 b1, 常规测试 (100% 生产测试) 和前期 预处理(抽			
		样测试)	<	<u> </u>	
		$V_{ini} = 1.2 \times V_{IOTM}$, $t_{ini} = 1$ s;	_	:5	
		$V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1 s$			
C _{IO}	栅电容,输入到输出 ⁵	$V_{10} = 0.4 \times \sin(2\pi ft)$, f = 1 MHz	~0.5	~0.5	pF
		V _{IO} = 500 V, T _A = 25°C	>1012	>1012	
R _{IO}	绝缘电阻5	V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C	>10 ¹¹	>10 ¹¹	Ω
		$V_{10} = 500 \text{ V at } T_S = 150^{\circ}\text{C}$	>109	>109	
	污染度		2	2	
UL 1577		T		_	•
V _{ISO}	最大隔离电压	V _{TEST} = V _{ISO} , t = 60 s (认证),	5700	7500	V_{RMS}
* 150	AVA VIIII LA CIVE	V _{TEST} = 1.2 × V _{ISO} , t = 1 s (100%生产测试)	3,00	, 300	* KIVIS

- 1. 根据应用的特定设备隔离标准应用爬电距离和间隙要求。注意保持电路板设计的爬电距离和间隙距离,以确保印刷电路板上隔离器的安装焊盘不会缩短该距离。在某些情况下印刷电路板上的爬电距离和间隙相等。在印刷电路板上插入凹槽的技术有助于提高这些指标。
- 2. 该标准仅适用于安全等级内的安全电气绝缘。 应通过适当的保护电路确保符合安全等级。
- 3. 测试在空气或油中进行,以确定隔离屏障的固有浪涌抗扰度。
- 4. 表征电荷是由局部放电引起的放电电荷(pd)。
- 5. 栅两侧的所有引脚连接在一起,形成双端子器件。

7.7. 安全相关认证

VDE	UL	TUV
根据 DIN V VDE V 0884-17:2021-10 认证	UL1577 器件程序认证	根据 EN 61010-1:2010+A1 认证
Maximum transient isolation voltage:	Single Protection:	SOIC8-WB:5700VRMs;
8000V _{pk} (SOIC8-WB), 8000V _{pk} (SOIC16-WB) and	SOIC8-WB:5700VRMS;	SOIC16-WB:5700VRMS;
8000V _{pk} (SOIC16-WWB)	SOIC16-WB:5700VRMS;	SOIC16-WWB: 5700 VRMS
Maximum repetitive peak isolation voltage:	SOIC16-WWB: 7500 VRMS	
2121V _{pk} (SOIC8-WB), 2121V _{pk} (SOIC16-WB) and		
2828V _{pk} (SOIC16-WWB)		
Maximum surge isolation voltage:		
8000V _{pk} (SOIC8-WB), 8000V _{pk} (SOIC16-WB) and		
8000V _{pk} (SOIC16-WWB)		
证书编号: 40057278	证书编号: E511334	证书编号: CN23RC4J 001

7.8. 电气特性

7.8.1. $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	参数	测试条件	最小值	典型值	最大值	单位
V _{OH}	输出电压逻辑高电平	I _{OH} = -4mA; 图 8-1	V _{DDO} ¹ -0.4	4.8		V
V _{OL}	输出电压逻辑低电平	I _{OL} = 4mA; 图 8-1		0.2	0.4	V
V _{IT+(IN)}	输入高电平		2			V
V _{IT-(IN)}	输入低电平				0.8	V
V _{IT+(EN)}	EN 引脚输入高电平		0.7*V _{DD}			V
V _{IT-(EN)}	EN 引脚输入低电平				0.3*V _{DD}	V
I _{IH}	输入高电平漏电流	$V_{IH} = V_{DDA/B}$ at VIx			20	μΑ
I _{IL}	输入低电平漏电流	V _{IL} = 0 V at VIx	-20			μΑ
Zo	输出阻抗 ²			50		Ω
CMTI	共模瞬变抗扰度	$V_{I} = V_{DDI}^{1}$ or 0 V, $V_{CM} = 1200$ V; $\boxtimes 8-3$	100	150		kV/μs
Cı	输入电容3	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1$ MHz, $V_{DD} = 5$ V		2		pF

备注:

- 1. V_{DDI} = 输入侧 V_{DD}, V_{DDO} = 输出侧 V_{DD}
- 2. 正常隔离器通道的输出阻抗约为 50Ω±40%。
- 3. 从引脚到地测量。

7.8.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	参数	测试条件	最小值	典型值	最大值	单位
V _{OH}	输出电压逻辑高电平	I _{OH} = -2mA; 图 8-1	V _{DDO} ¹ -0.4	3.1		V
V _{OL}	输出电压逻辑低电平	I _{OL} = 2mA; 图 8-1		0.2	0.4	V
V _{IT+(IN)}	输入高电平		2			V
V _{IT-(IN)}	输入低电平				0.8	V
V _{IT+(EN)}	EN 引脚输入高电平		0.7*V _{DD}			V
V _{IT-(EN)}	EN 引脚输入低电平				$0.3*V_{DD}$	V
I _{IH}	输入高电平漏电流	$V_{IH} = V_{DDA/B}$ at VIx			20	μΑ
I _{IL}	输入低电平漏电流	V _{IL} = 0 V at VIx	-20			μΑ
Z _O	输出阻抗 2			50		Ω
CMTI	共模瞬变抗扰度	$V_1 = V_{DDI}^1$ or 0 V, $V_{CM} = 1200$ V; $[8]$ 8-3	100	150		kV/μs
Cı	输入电容3	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1 \text{ MHz}$, $V_{DD} = 3.3 \text{ V}$		2	<u> </u>	pF

备注:

- 1. V_{DDI} = 输入侧 V_{DD,} V_{DDO} = 输出侧 V_{DD}
- 2. 正常隔离器通道的输出阻抗约为 50Ω±40%。
- 3. 从引脚到地测量。

7.8.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	参数	测试条件	最小值	典型值	最大值	单位
V _{OH}	输出电压逻辑高电平	I _{OH} = -1mA; 图 8-1	V _{DDO} ¹ -0.4	2.3		V
V _{OL}	输出电压逻辑低电平	I _{OL} = 1mA; 图 8-1		0.2	0.4	V
V _{IT+(IN)}	输入高电平		2			V
V _{IT-(IN)}	输入低电平				8.0	V
V _{IT+(EN)}	EN 引脚输入高电平		0.7*V _{DD}			V
V _{IT-(EN)}	EN 引脚输入低电平				$0.3*V_{DD}$	V
I _{IH}	输入高电平漏电流	$V_{IH} = V_{DDA/B}$ at VIx			20	μΑ
I _{IL}	输入低电平漏电流	V _{IL} = 0 V at VIx	-20			μΑ
Z _O	输出阻抗 2			50		Ω
CMTI	共模瞬变抗扰度	$V_I = V_{DDI}^1$ or 0 V, $V_{CM} = 1200$ V; 图 8-3	100	150		kV/μs
Cı	输入电容3	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}, V_{DD} = 2.5 \text{ V}$		2		pF

- 1. V_{DDI} = 输入侧 V_{DD,} V_{DDO} = 输出侧 V_{DD}
- 2. 正常隔离器通道的输出阻抗约为 50Ω±40%。
- 3. 从引脚到地测量。

7.9. 电源电流特性

7.9.1. $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

测试条件		电源电流	最小值	典型值	最大值	单位
V _{IN} = 0V (CA-IS3820L);		I _{DDA}		0.9	1.3	
$V_{IN} = V_{DDI}^{1}$ (CA-IS3820H)		I _{DDB}		1.4	2.2	
$V_{IN} = V_{DDI}$ (CA-IS3820L);		I _{DDA}		2.5	4.1	
$V_{IN} = 0V(CA-IS3820H)$		I _{DDB}		1.5	2.3	
	1Mbps	I _{DDA}		1.7	2.7	A
!	(500kHz)	I _{DDB}		2.2	3.2	mA
所有通道输入50%占空比,幅值	10Mbps	I _{DDA}		1.8	2.9	
为 5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		8.8	11.8	
!	100Mbps	I _{DDA}		2.5	3.9	
!	(50MHz)	I _{DDB}		22	30.0	
V _{IN} = 0V (CA-IS3821L);		I _{DDA}		1.6	3.2	
$V_{IN} = V_{DDI}$ (CA-IS3821H)		I _{DDB}		1.6	3.2	
$V_{IN} = V_{DDI}$ (CA-IS3821L);		I _{DDA}		2.9	5.8	
V _{IN} = 0V(CA-IS3821H)		I _{DDB}		2.9	5.8	
	1Mbps	I _{DDA}		2.1	3.2	mA
	(500kHz)	I _{DDB}		2.1	3.2	mA
所有通道输入50%占空比,幅值	10Mbps	I _{DDA}		5.6	7.8	
为 5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		5.6	7.8	
!	100Mbps	I _{DDA}		12.9	22	
	(50MHz)	I _{DDB}		12.9	22	
V _{IN} = 0V (CA-IS3822L);		I _{DDA}		1.6	3.2	
$V_{IN} = V_{DDI}$ (CA-IS3822H)		I _{DDB}		1.6	3.2	
$V_{IN} = V_{DDI}$ (CA-IS3822L);		I _{DDA}		2.9	5.8	
V _{IN} = 0V(CA-IS3822H)		I _{DDB}		2.9	5.8	
	1Mbps	I _{DDA}		2.1	3.2	
!	(500kHz)	I _{DDB}		2.1	3.2	mA
所有通道输入 50%占空比,幅值	10Mbps	I _{DDA}		5.6	7.8	
为 5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		5.6	7.8	
· !	100Mbps	I _{DDA}		12.9	22	
		I _{DDB}		12.9	22	1
	V _{IN} = 0V (CA-IS3820L); V _{IN} = V _{DDI} ¹ (CA-IS3820H) V _{IN} = V _{DDI} (CA-IS3820L); V _{IN} = 0V(CA-IS3820H) 所有通道输入 50%占空比,幅值 为 5V 的方波; 每个通道 C _L = 15 pF V _{IN} = 0V (CA-IS3821L); V _{IN} = V _{DDI} (CA-IS3821L); V _{IN} = 0V(CA-IS3821H) 所有通道输入 50%占空比,幅值 为 5V 的方波; 每个通道 C _L = 15 pF	V _{IN} = 0V (CA-IS3820L); V _{IN} = V _{DDI} (CA-IS3820H) V _{IN} = V _{DDI} (CA-IS3820H) 所有通道输入 50%占空比,幅值 为 5V 的方波;每个通道 C _L = 15 pF 10Mbps (500kHz) 10Mbps (50MHz) 10Mbps (50MHz) 100Mbps (50MHz) 100Mbps (50MHz) 100Mbps (50MHz) 100Mbps (50MHz) 100Mbps (50MHz) 100Mbps (500kHz) 100Mbps (500kHz) 100Mbps (500kHz) 100Mbps (500kHz) 100Mbps (500MHz) 100Mbps (50MHz) 100Mbps (50MHz) 100Mbps (50MHz) 100Mbps (500MHz) 1	V _{IN} = 0V (CA-IS3820L);	V _{IN} = 0V (CA-IS3820L); V _{IN} = V _{DDI} ¹ (CA-IS3820H)	V _{IN} = 0V (CA-IS3820L);	V _{IN} = OV (CA-IS3820L);

V_{DDI} = 输入侧 V_{DD}

7.9.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

参数	测试条件		电源电流	最小值	典型值	最大值	单位
A-IS3820							
	V _{IN} = 0V (CA-IS3820L);		I _{DDA}		0.8	1.3	
电源电流 -直流信号	$V_{IN} = V_{DDI}^{1} (CA-IS3820H)$		I _{DDB}		1.3	2.0	
电源电弧 一旦孤行 5	$V_{IN} = V_{DDI}$ (CA-IS3820L);		I _{DDA}		2.4	4.0	
	$V_{IN} = 0V(CA-IS3820H)$		I _{DDB}		1.4	2.2	
		1Mbps	I _{DDA}		1.6	2.7	m
电源电流 – 交流信号		(500kHz)	I _{DDB}		1.9	2.7] "
	所有通道输入50%占空比,幅值为	10Mbps	I _{DDA}		1.7	2.7	
电源电弧 - 文弧信号	3.3V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		6.2	8.4	
		100Mbps	I _{DDA}		2.2	3.5	
			I _{DDB}		14.4	19.7	
A-IS3821				•			
	V _{IN} = 0V (CA-IS3821L);		I _{DDA}		1.2	1.9	
电源电流 –直流信号	$V_{IN} = V_{DDI}$ (CA-IS3821H)		I _{DDB}		1.2	1.9	
	$V_{IN} = V_{DDI}$ (CA-IS3821L);		I _{DDA}		2.3	3.3	
	$V_{IN} = OV(CA-IS3821H)$		I _{DDB}		2.3	3.3	
		1Mbps	I _{DDA}		1.9	2.9	2.9
		(500kHz)	I _{DDB}		1.9	2.9	n
上灰上 次	所有通道输入50%占空比,幅值为	10Mbps	I _{DDA}		4.2	5.9	
电源电流 - 交流信号	3.3V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		4.2	5.9	
	,	100Mbps	I _{DDA}		8.8	12.1	
		(50MHz)	I _{DDB}		8.8	12.1	
A-IS3822	-			l			
	V _{IN} = 0V (CA-IS3822L);		I _{DDA}		1.2	1.9	
电源电泳 表达片目	$V_{IN} = V_{DDI}$ (CA-IS3822H)		I _{DDB}		1.2	1.9	
电源电流 -直流信号	$V_{IN} = V_{DDI}$ (CA-IS3822L);		I _{DDA}		2.3	3.3	
	$V_{IN} = OV(CA-IS3822H)$		I _{DDB}		2.3	3.3	
		1Mbps	I _{DDA}		1.9	2.9	1
		(500kHz)	I _{DDB}		1.9	2.9	n
	所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		4.2	5.9	1
电源电流 - 父流信号	电源电流 – 交流信号 3.3V 的方波; 每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		4.2	5.9	-
		100Mbps	I _{DDA}		8.8	12.1	1
		(50MHz)	I _{DDB}		8.8	12.1	1

^{1.} V_{DDI} = 输入侧 V_{DD}

7.9.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

测试条件		电源电流	最小值	典型值	最大值	单位
V _{IN} = 0V (CA-IS3820L);		I _{DDA}		0.8	1.2	
$V_{IN} = V_{DDI}^{1} (CA-IS3820H)$		I _{DDB}		1.4	2.0	
$V_{IN} = V_{DDI}$ (CA-IS3820L);		I _{DDA}		2.4	4.0	
V _{IN} = 0V(CA-IS3820H)		I _{DDB}		1.4	2.1	
	1Mbps	I _{DDA}		1.6	2.6	1
	(500kHz)	I _{DDB}		1.7	2.5	m
所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		1.7	2.7	
2.5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		5.0	6.8	
	100Mbps	I _{DDA}		2.1	3.4	
	(50MHz)	I _{DDB}		10.8	14.7	1
		•				1
V _{IN} = 0V (CA-IS3821L);		I _{DDA}		1.5	1.9	
$V_{IN} = V_{DDI}$ (CA-IS3821H)		I _{DDB}		1.5	1.9	
$V_{IN} = V_{DDI}$ (CA-IS3821L);		I _{DDA}		2.1	3.1	
V _{IN} = 0V(CA-IS3821H)		I _{DDB}		2.1	3.1	
	1Mbps	I _{DDA}		1.9	2.8	2.8
	(500kHz)	I _{DDB}		1.9	2.8	m
所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		3.6	5.2	
2.5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		3.6	5.2	
	100Mbps	I _{DDA}		6.9	9.5	
	(50MHz)	I _{DDB}		6.9	9.5	
						1
V _{IN} = 0V (CA-IS3822L);		I _{DDA}		1.5	1.9	
$V_{IN} = V_{DDI}$ (CA-IS3822H)		I _{DDB}		1.5	1.9	
$V_{IN} = V_{DDI}$ (CA-IS3822L);		I _{DDA}		2.1	3.1	
V _{IN} = 0V(CA-IS3822H)		I _{DDB}		2.1	3.1	1
	1Mbps	I _{DDA}		1.9	2.8	1
	(500kHz)	I _{DDB}		1.9	2.8	m
所有通道输入 50%占空比,幅值为	10Mbps	I _{DDA}		3.6	5.2	1
2.5V 的方波;每个通道 C _L = 15 pF	(5MHz)	I _{DDB}		3.6	5.2	1
	100Mbps	I _{DDA}		6.9	9.5	1
I I	(50MHz)	H		6.9	9.5	-1
	V _{IN} = 0V (CA-IS3820L); V _{IN} = V _{DDI} ¹ (CA-IS3820H) V _{IN} = V _{DDI} (CA-IS3820H) 所有通道输入 50%占空比,幅值为 2.5V 的方波;每个通道 C _L = 15 pF V _{IN} = 0V (CA-IS3821L); V _{IN} = V _{DDI} (CA-IS3821L); V _{IN} = V _{DDI} (CA-IS3821H) Fin = 0V (CA-IS3822H) V _{IN} = 0V (CA-IS3822H) V _{IN} = 0V (CA-IS3822L); V _{IN} = V _{DDI} (CA-IS3822L); V _{IN} = V _{DDI} (CA-IS3822L); V _{IN} = 0V (CA-IS3822H) Fin = 0V (CA-IS3822H) Fin = 0V (CA-IS3822H)	V _{IN} = 0V (CA-IS3820L);	V _{IN} = OV (CA-IS3820L);			

^{1.} V_{DDI} = 输入侧 V_{DD}

7.10. 时序特性

7.10.1. $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

DR 数据速率 0 PWmin 最小脉宽 tplh, tphL 传播延迟 PWD 脉冲宽度失真 tph - tphL 图 8-1	典型值	最大值	单位
t _{PLH} , t _{PHL} 传播延迟 图 8-1		150	Mbps
以 R-1		5.0	ns
PWD 脉冲宽度失直 t _{nu} - t _{nu}	12.0	15.0	ns
THE WALL STATE OF THE STATE OF	0.2	4.5	ns
t _{sk(o)} 通道到通道输出偏移时间 ¹ 同方向通道	0.4	2.5	ns
t _{sk(pp)} 片与片之间通道输出偏移时间 ² 内分间通道	2.0	4.5	ns
tr 输出上升时间 图 8-1	2.5	4.0	ns
t _f 输出下降时间 图 8-1	2.5	4.0	ns
t _{DO} 默认输出延迟时间从输入电源损耗 图 8-2	8	12	μs
t _{SU} 启动时间	15	40	μs

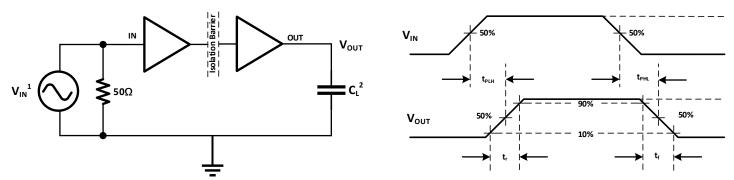
备注:

- 1. tsk(o) 为具有所有驱动输入连接在一起的单个设备的输出与驱动相同负载时沿相同方向切换的输出之间的偏差
- 2. tsk(pp)是在相同的电源电压、温度、输入信号和负载下,不同器件在同一方向切换的任意终端之间传播延迟时间的差值

7.10.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

PW _{min} 最小 t _{PLH} , t _{PHL} 传播 PWD 脉冲	居速率				最大值	单位
t _{PLH} , t _{PHL} 传播 PWD 脉冲	日2年		0		150	Mbps
PWD 脉冲	卜脉宽				5.0	ns
13.11	番延迟	图 8-1		12.0	17.0	ns
+	中宽度失真 tplh - tphl	図 9-1		0.2	4.5	ns
t _{sk(o)} 通道	首到通道输出偏移时间 ¹	- 同方向通道		0.4	2.5	ns
t _{sk(pp)} 片与	万片之间通道输出偏移时间 2	刊月刊地地		2.0	4.5	ns
t _r 输出	出上升时间	图 8-1		2.5	4.0	ns
t _f 输出	出下降时间	图 8-1		2.5	4.0	ns
t _{DO} 默り	人输出延迟时间从输入电源损耗	图 8-2		8	12	μs
t _{su} 启动	htt 百			15	40	μs

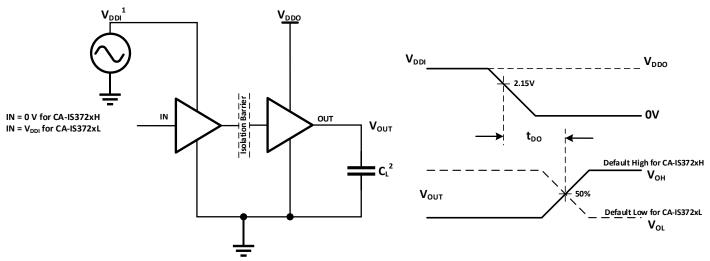
备注:


- 1. tsk(o) 为具有所有驱动输入连接在一起的单个设备的输出与驱动相同负载时沿相同方向切换的输出之间的偏差
- 2. tsk(pp)是在相同的电源电压、温度、输入信号和负载下,不同器件在同一方向切换的任意终端之间传播延迟时间的差值

7.10.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	参数	测试说明	最小值	典型值	最大值	单位
DR	数据速率		0		150	Mbps
PW_{min}	最小脉宽				5.0	ns
t _{PLH} , t _{PHL}	传播延迟	图 8-1		12.0	20.0	ns
PWD	脉冲宽度失真 tplh - tphl	图 9-1		0.2	5.0	ns
t _{sk(o)}	通道到通道输出偏移时间 1	同方向通道		0.4	2.5	ns
t _{sk(pp)}	片与片之间通道输出偏移时间 ²	四万円通足		2.0	5.0	ns
t _r	输出上升时间	图 8-1		2.5	4.0	ns
t _f	输出下降时间	图 8-1		2.5	4.0	ns
t _{DO}	默认输出延迟时间从输入电源损耗	图 8-2		8	12	μs
t _{SU}	启动时间			15	40	μs

- 1. tsk(o) 为具有所有驱动输入连接在一起的单个设备的输出与驱动相同负载时沿相同方向切换的输出之间的偏差
- 2. tsk(pp)是在相同的电源电压、温度、输入信号和负载下,不同器件在同一方向切换的任意终端之间传播延迟时间的差值


8. 参数测量信息

备注:

- 1. 信号发生器产生输入信号 V_{IN} 具有以下约束条件:波形频率≤100kHz,占空比 50%,tr≤3ns, tf≤3ns。由于波形发生器的输出阻抗 Zout = 50Ω,图中的 50Ω 电阻是用来匹配。在实际应用中不需要。
- 2. C_L 是大约 15pF 的负载电容和仪表电容。由于负载电容会影响输出上升时间,因此它是时序特性测量的关键因素。

图 8-1 时序特性测试电路和电压波形



备注:

- 1. 信号发生器产生输入信号 V_{IN} 具有以下约束条件:波形频率≤100kHz,占空比 50%,tr≤3ns, tf≤3ns。由于波形发生器的输出阻抗 Zout = 50Ω,图中的 50Ω 电阻是用来匹配。在实际应用中不需要。
- 2. C_L 是大约 **15pF** 的负载电容和仪表电容。由于负载电容会影响输出上升时间,因此它是时序特性测量的关键因素。

图 8-2 默认输出延迟时间测试电路和电压波形

- 1. 高压浪涌脉冲发生器产生振幅> 1kV,上升/下降时间<10ns,达到共模瞬态噪声压摆率> 150kV /μs 的重复高压脉冲。
- 2. CL是大约 15pF 的负载电容以及仪表电容。
- 3. 通过-失败标准:每当高压浪涌到来时,输出必须保持稳定。
- 4. C_{BP} 是 0.1μF~1μF 的旁路电容。

图 8-3 共模瞬变抗扰度测试电路

9. 详细说明

9.1. 工作原理

CA-IS38xx 系列产品采用全差分隔离电容技术。由 SiO₂ 构成的高压隔离电容为不同的电压域之间提供可靠的绝缘屏障,并提供可靠的高频信号传输路径;为了保证稳定的数据传输质量,引入开关键控(OOK)调制解调技术。发射机(TX) 将输入信号调制到载波频率上,即 TX 在一个输入状态下通过隔离电容传递高频信号,而在另一个输入状态下无信号通过隔离电容,然后接收机根据检测到的带内数据重建输入信号。这个架构为隔离的不同电压域之间提供了可靠的数据传输路径,在启动时不需要考虑初始化。全差分的隔离电容架构可以最大限度地提高信号共模瞬态抗于扰能力。

CA-IS38xx 系列产品采用先进的电路技术可以有效的抑制载波信号和 IO 开关引入的 EMI。相比于电感耦合隔离架构,电容耦合架构具有更高的电磁抗干扰能力。OOK 调制方案消除了脉冲调制方案中可能出现的脉冲丢失引起的误码现象。图 9-1 和图 9-2 分别为单通道功能框图和 OOK 开关键控调制方案波形示意图。

9.2. 功能框图

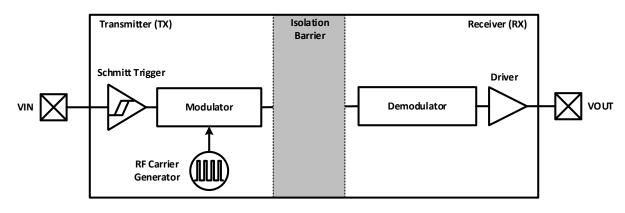


图 9-1 单通道功能框图

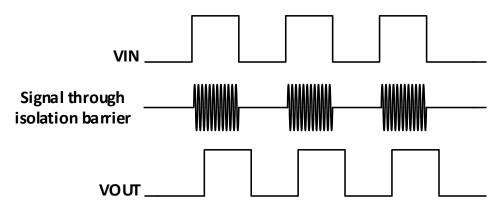


图 9-2 OOK 开关键控调制方案波形示意图

9.3. 真值表

表 9-1 为 CA-IS382x 器件真值表。

表 9-1 真值表 1

V_{DDI}	V_{DDO}	输入(Ax/Bx)²	输出使能 (ENx) ^{3,4}	输出 (Ax/Bx)	模式
	PU	Н	H or NC	Н	正常运行模式:
		L	H or NC	通道的输出跟随通道输入状态	
PU					默认输出故障安全模式:
		Open	H or NC	Default	如果通道的输入保持断开状态,则其输出将变为默认值
					(CA-IS382xL 为低,CA-IS382xH 为高)。
Х	PU	Х	L	Z	高阻抗模式:
^					如果 Enable 引脚连接为低电平,则输出将处于高阻态。
	PU	х	H or NC		默认输出故障安全模式:
PD				Default	如果输入侧 VDD 未通电,则输出进入默认输出故障安全
					模式(CA-IS382xL 为低电平,CA-IS382xH 为高电平)。
Х	PD	Х	Х	Undetermined	如果输出侧 VDD 未供电,则输出的状态不确定.5

备注:

- 1. V_{DDI} =输入侧 V_{DD}; V_{DDO} =输出侧 V_{DD}; PU = 上电 (VCC ≥ 2.375 V); PD = 断电(VCC ≤ 2.25 V); X = 无关; H =高电平; L =低电平; Z =高阻抗。
- 2. 强驱动的输入信号可以通过内部保护二极管微弱地驱动浮动的 VDD,从而导致输出不确定。
- 3. 当 CA-IS382x 在噪声环境中工作时,建议将使能引脚输入连接到外部逻辑的高电平或低电平。
- 4. NC 引脚是没有内部连接,可以悬空,连接到 VDD 或连接到 GND。
- 5. 当 2.25V < VDDI, VDDO < 2.375 V 时,输出处于不确定状态。

表 9-1 使能输入真值表

型号	ENA ^{1,2}	ENB ^{1,2}	状态
CA-IS3820	_	Н	输出 VO1, VO2 通道开启,输出状态和输入状态相同。
CA-133620	_	L	输出 VO1, VO2 通道关闭,输出为高阻态。
	Н	Х	输出 VO1 通道开启,输出状态和输入状态相同。
CA-IS3821	L	Х	输出 VO1 通道关闭,输出为高阻态。
CA-133621	Х	Н	输出 VO1 通道开启 ,输出状态和输入状态相同。
	Х	L	输出 VO1 通道关闭,输出为高阻态。
	Н	Х	输出 VO1 通道开启
CA-IS3822	L	Х	输出 VO1 关闭,输出为高阻态。
CA-135622	Х	Н	输出 VO2 通道开启,输出状态和输入状态相同。
	Х	L	输出 VO2 通道关闭,输出为高阻态。

- 1. 使能输入 ENA 和 ENB 可用于多路复用,时钟同步或其他输出控制。 表 9-2 中列出了每种隔离器产品的 ENA, ENB 逻辑运算。 这些输入在内部上拉至本地 VDD, 允许它们连接到外部逻辑电平(高或低)或悬空。 为了最大限度地降低噪声耦合,如果它们悬空,请不要将电路走线连接到 ENA 或 ENB。 如果未使用 ENA, ENB, 建议将它们连接到外部逻辑电平,特别是如果 CA-IS382x 在嘈杂的环境中运行。
- 2. X=无关; H=高电平; L=低电平。

10. 应用电路

相比于光耦器件,CA-IS38xx 系列数字隔离器不需要外部元件来提供偏置或限制电流能力,只需要两个外部 VDD 旁路电容(0.1μ F 至 1μ F)即可工作。 CA-IS38xx 产品输入兼容 TTL 电平,仅吸收微安级的输入漏电流,无需外部缓冲电路即可驱动。 输出电阻为 50Ω (轨到轨输出),可提供正向和反向通道配置。图 10-1 显示了 CA-IS38x1 的典型应用电路。图 10-2 显示了 CA-IS38xx 系列产品的典型应用电路。

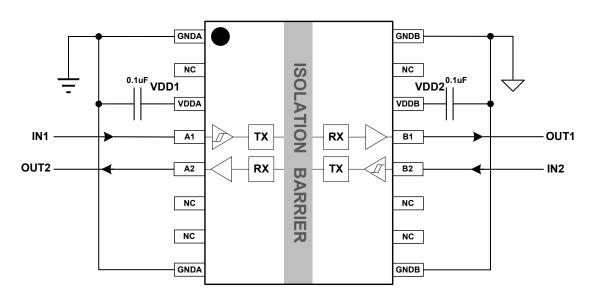
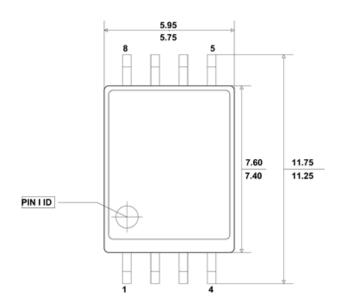
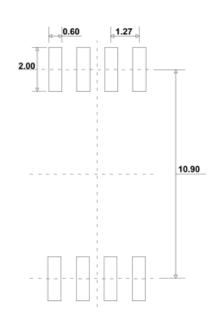


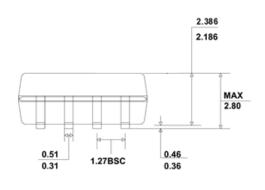
图 10-1 SOIC-16 CA-IS3821 典型应用电路

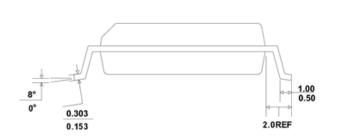

图 10-2 CA-IS38xx 系列数字隔离器应用原理图



11. 封装信息

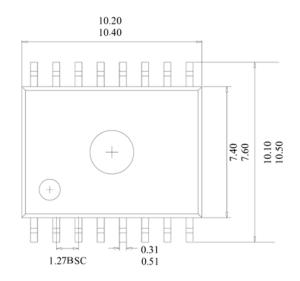
11.1. SOIC8 宽体外形尺寸

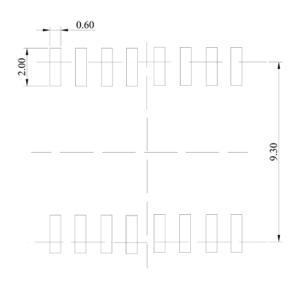

下图说明了 CA-IS382x 系列数字隔离器采用 SOIC8 宽体封装大小尺寸图和建议焊盘尺寸图。尺寸以毫米为单位。



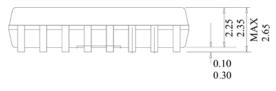
TOP VIEW

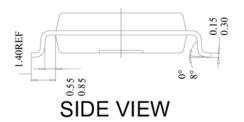
RECOMMENDED LAND PATTERN


FRONT VIEW

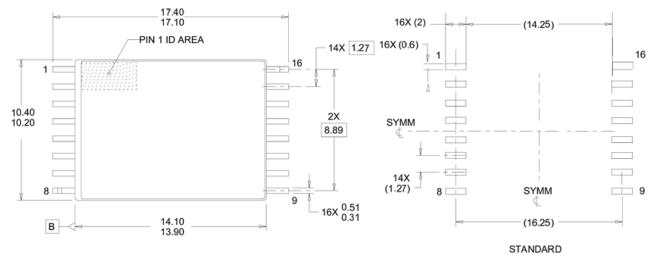

LEFT-SIDE VIEW

11.2. SOIC16 宽体外形尺寸


下图说明了 CA-IS382x 系列数字隔离器采用 SOIC-16WB 宽体封装大小尺寸图和建议焊盘尺寸图。 尺寸以毫米为单位。



TOP VIEW


FRONT VIEW

11.1. SOIC16 超宽体外形尺寸

下图说明了 CA-IS382x 系列数字隔离器 SOIC16 超宽体封装大小尺寸图和建议焊盘尺寸图。尺寸以毫米为单位。

TOP VIEW

RECOMMENDED LAND PATTERN

SIDE VIEW

12. 焊接信息

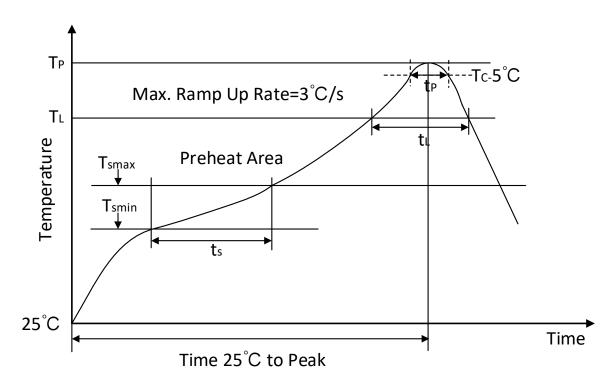
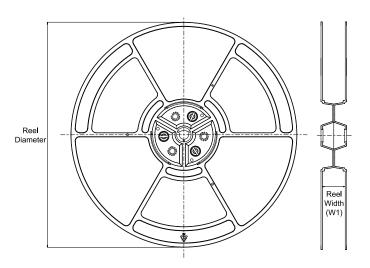
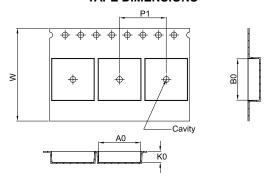


图 12-1 焊接温度曲线

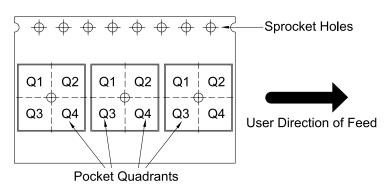

表 12-1 焊接温度参数

简要说明	无铅焊接
温升速率(T _L =217℃ 至峰值 T _P)	最大 3℃/s
T _{smin} =150°C 到 T _{smax} =200°C 预热时间 t _s	60~120 秒
温度保持 217℃ 以上时间 t _L	60~150 秒
峰值温度 T _P	260°C
小于峰值温度 5℃ 以内时间 tp	最长 30 秒
降温速率(峰值 T _P 至 T _L =217℃)	最大 6°C/s
常温 25℃ 到峰值温度 T _P 时间	最长8分钟



13. 编带信息

REEL DIMENSIONS



TAPE DIMENSIONS

Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diamete r (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3820LG	SOIC	G	8	1000	330	16.4	11.95	6.15	3.2	16.0	16.0	Q1
CA-IS3820LW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3820LWW	SOIC	WW	16	1000	330	24.4	17.6	10.8	3.0	20.0	24.0	Q1
CA-IS3820HG	SOIC	G	8	1000	330	16.4	11.95	6.15	3.2	16.0	16.0	Q1
CA-IS3820HW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3820HWW	SOIC	WW	16	1000	330	24.4	17.6	10.8	3.0	20.0	24.0	Q1
CA-IS3821LG	SOIC	G	8	1000	330	16.4	11.95	6.15	3.2	16.0	16.0	Q1
CA-IS3821LW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3821LWW	SOIC	WW	16	1000	330	24.4	17.6	10.8	3.0	20.0	24.0	Q1
CA-IS3821HG	SOIC	G	8	1000	330	16.4	11.95	6.15	3.2	16.0	16.0	Q1
CA-IS3821HW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3821HWW	SOIC	WW	16	1000	330	24.4	17.6	10.8	3.0	20.0	24.0	Q1
CA-IS3822LG	SOIC	G	8	1000	330	16.4	11.95	6.15	3.2	16.0	16.0	Q1
CA-IS3822LW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3822LWW	SOIC	WW	16	1000	330	24.4	17.6	10.8	3.0	20.0	24.0	Q1
CA-IS3822HG	SOIC	G	8	1000	330	16.4	11.95	6.15	3.2	16.0	16.0	Q1
CA-IS3822HW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3822HWW	SOIC	WW	16	1000	330	24.4	17.6	10.8	3.0	20.0	24.0	Q1

14. 重要声明

上述资料仅供参考使用,用于协助 Chipanalog 客户进行设计与研发。Chipanalog 有权在不事先通知的情况下,保留因技术革新而改变上述资料的权利。

Chipanalog 产品全部经过出厂测试。针对具体的实际应用,客户需负责自行评估,并确定是否适用。Chipanalog 对客户使用所述资源的授权仅限于开发所涉及 Chipanalog 产品的相关应用。除此之外不得复制或展示所述资源,如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,Chipanalog 对此概不负责。

商标信息

Chipanalog Inc.®、Chipanalog®为 Chipanalog 的注册商标。

http://www.chipanalog.com