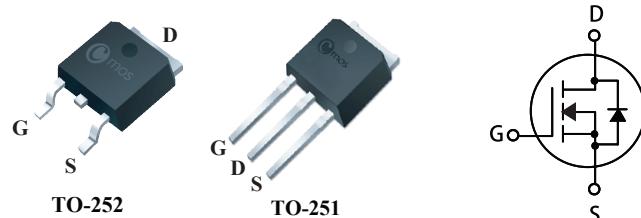


General Description

The 046N08 uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. It can be used in a wide variety of applications.

Product Summary

BVDSS	RDSON	ID
80V	4.4mΩ	90A


Applications

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Features

- Lower On-resistance
- 100% Avalanche Tested
- RoHS Compliant

TO-252/251 Pin Configuration

Type	Package	Marking
CMD046N08	TO-252	CMD046N08
CMU046N08	TO-251	CMU046N08

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V_{DS}	Drain-Source Voltage	80	V
V_{GS}	Gate-Source Voltage	± 20	V
$I_D @ T_c = 25^\circ C$	Continuous Drain Current	90	A
$I_D @ T_c = 100^\circ C$	Continuous Drain Current	63	A
I_{DM}	Pulsed Drain Current	360	A
E_{AS}	Drain-Source Avalanche Energy ¹	840	mJ
$P_D @ T_c = 25^\circ C$	Total Power Dissipation	150	W
T_{STG}	Storage Temperature Range	-55 to 175	°C
T_J	Operating Junction Temperature Range	-55 to 175	°C

Thermal Data

Symbol	Parameter	Value	Unit
$R_{\theta JA}$	Thermal Resistance Junction-ambient(6 cm ² cooling area) ²	50	°C/W
$R_{\theta JC}$	Thermal Resistance Junction-case	1.2	°C/W

Electrical Characteristics ($T_J=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV_{DS}	Drain-Source Breakdown Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_D=250\mu\text{A}$	80	---	---	V
$\text{R}_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$\text{V}_{\text{GS}}=10\text{V}$, $\text{I}_D=28\text{A}$	---	3.6	4.4	$\text{m}\Omega$
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	$\text{V}_{\text{GS}}=\text{V}_{\text{DS}}$, $\text{I}_D=250\mu\text{A}$	2	---	4	V
I_{DSS}	Drain-Source Leakage Current	$\text{V}_{\text{DS}}=80\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$	---	---	1	μA
I_{GSS}	Gate-Source Leakage Current	$\text{V}_{\text{GS}}=\pm 20\text{V}$, $\text{V}_{\text{DS}}=0\text{V}$	---	---	± 100	nA
R_g	Gate Resistance	$\text{V}_{\text{DS}}=10\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $f=1\text{MHz}$	---	1.5	---	Ω
Q_g	Total Gate Charge	$\text{I}_D=45\text{A}$	---	42	---	nC
Q_{gs}	Gate-Source Charge	$\text{V}_{\text{DD}}=40\text{V}$	---	14	---	
Q_{gd}	Gate-Drain Charge	$\text{V}_{\text{GS}}=0$ to 10V	---	9	---	
$\text{T}_{\text{d(on)}}$	Turn-On Delay Time	$\text{V}_{\text{DD}}=40\text{V}$	---	15	---	ns
T_r	Rise Time	$\text{R}_g=1.6\Omega$	---	10	---	
$\text{T}_{\text{d(off)}}$	Turn-Off Delay Time	$\text{V}_{\text{GS}}=10\text{V}$	---	30	---	
T_f	Fall Time	$\text{I}_D=45\text{A}$	---	10	---	
C_{iss}	Input Capacitance	$\text{V}_{\text{DS}}=25\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $f=1\text{MHz}$	---	4000	---	pF
C_{oss}	Output Capacitance		---	2700	---	
C_{rss}	Reverse Transfer Capacitance		---	200	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_s	Continuous Source Current	$\text{V}_G=\text{V}_D=0\text{V}$, Force Current	---	---	90	A
I_{SM}	Pulsed Source Current		---	---	460	A
V_{SD}	Diode Forward Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_s=28\text{A}$, $T_J=25^\circ\text{C}$	---	---	1.2	V

Notes:

1. The EAS data shows Max. rating .The test condition is $\text{V}_{\text{DS}}=40\text{V}$, $\text{V}_{\text{GS}}=10\text{V}$, $L=1\text{mH}$, $\text{IAS}=41\text{A}$.
2. Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm^2 (one layer, 70 μm thick) copper area for drain connection. PCB is vertical in still air.

This product has been designed and qualified for the consumer market.
 Cmos assumes no liability for customers' product design or applications.
 Cmos reserves the right to improve product design ,functions and reliability without notice.