

General Description

The 85N03 uses advanced trench technology to provide excellent RDS(ON). This device is suitable for use as a wide variety of applications.

Features

- Low On-Resistance
- 100% avalanche tested
- High Current Capability
- RoHS Compliant

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	± 20	V
$I_D @ T_C = 25^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10\text{V}$	70	A
$I_D @ T_C = 100^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10\text{V}$	50	A
I_{DM}	Pulsed Drain Current	210	A
EAS	Single Pulse Avalanche Energy	125	mJ
$P_D @ T_C = 25^\circ\text{C}$	Total Power Dissipation	65	W
T_{STG}	Storage Temperature Range	-55 to 175	$^\circ\text{C}$
T_J	Operating Junction Temperature Range	-55 to 175	$^\circ\text{C}$

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction-ambient (PCB Mount)	---	50	$^\circ\text{C}/\text{W}$
$R_{\theta JC}$	Thermal Resistance Junction -Case	---	2	$^\circ\text{C}/\text{W}$

Product Summary

BVDSS	RDSON	ID
30V	6.8m Ω	70A

Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

TO-252/251 Pin Configuration

Type	Package	Marking
CMD85N03	TO-252	CMD85N03
CMU85N03	TO-251	CMU85N03

Electrical Characteristics ($T_J=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_{\text{D}}=250\text{uA}$	30	---	---	V
$\text{R}_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$\text{V}_{\text{GS}}=10\text{V}$, $\text{I}_{\text{D}}=28\text{A}$	---	---	6.8	$\text{m}\Omega$
		$\text{V}_{\text{GS}}=4.5\text{V}$, $\text{I}_{\text{D}}=20\text{A}$	---	---	11	
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	$\text{V}_{\text{DS}}=\text{V}_{\text{GS}}$, $\text{I}_{\text{D}}=250\text{uA}$	1	---	3	V
I_{DSS}	Drain-Source Leakage Current	$\text{V}_{\text{DS}}=24\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{T}_J=25^\circ\text{C}$	---	---	1	uA
		$\text{V}_{\text{DS}}=24\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{T}_J=125^\circ\text{C}$	---	---	150	
I_{GSS}	Gate-Source Leakage Current	$\text{V}_{\text{GS}}=\pm 20\text{V}$, $\text{V}_{\text{DS}}=0\text{V}$	---	---	± 100	nA
g_{fs}	Forward Transconductance	$\text{V}_{\text{DS}}=5\text{V}$, $\text{I}_{\text{D}}=20\text{A}$	---	20	---	S
R_{g}	Gate Resistance	$\text{V}_{\text{DS}}=0\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{f}=1\text{MHz}$	---	2.4	---	Ω
Q_{g}	Total Gate Charge	$\text{V}_{\text{DS}}=15\text{V}$, $\text{V}_{\text{GS}}=4.5\text{V}$, $\text{I}_{\text{D}}=20\text{A}$	---	15	---	nC
Q_{gs}	Gate-Source Charge		---	4.2	---	
Q_{gd}	Gate-Drain Charge		---	7	---	
$\text{T}_{\text{d(on)}}$	Turn-On Delay Time	$\text{V}_{\text{DD}}=15\text{V}$, $\text{V}_{\text{GS}}=10\text{V}$, $\text{R}_{\text{G}}=10\Omega$	---	12	---	ns
T_{r}	Rise Time		---	80	---	
$\text{T}_{\text{d(off)}}$	Turn-Off Delay Time		---	48	---	
T_{f}	Fall Time		---	35	---	
C_{iss}	Input Capacitance	$\text{V}_{\text{DS}}=15\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{f}=1\text{MHz}$	---	1200	---	pF
C_{oss}	Output Capacitance		---	450	---	
C_{rss}	Reverse Transfer Capacitance		---	100	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{s}	Continuous Source Current	$\text{V}_{\text{G}}=\text{V}_{\text{D}}=0\text{V}$, Force Current	---	---	70	A
V_{SD}	Diode Forward Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_{\text{s}}=28\text{A}$, $\text{T}_J=25^\circ\text{C}$	---	---	1.3	V

This product has been designed and qualified for the consumer market.
 Cmos assumes no liability for customers' product design or applications.
 Cmos reserves the right to improve product design, functions and reliability without notice.