

General Description

N-channel enhancement mode field-effect power transistor in a plastic envelope suitable for surface mounting. The device is intended for use in Switched Mode Power Supplies (SMPS), motor control, welding, DC/DC and AC/DC converters, and in general purpose switching applications.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Mounting Information Provided for the DPAK Package
- 100% avalanche tested
- Green Device Available

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	100	V
V_{GS}	Gate-Source Voltage	± 20	V
$I_D @ T_C = 25^\circ C$	Continuous Drain Current ¹	12	A
$I_D @ T_C = 100^\circ C$	Continuous Drain Current ¹	7	A
I_{DM}	Pulsed Drain Current ²	40	A
EAS	Single Pulse Avalanche Energy ³	60.5	mJ
I_{AS}	Avalanche Current	10	A
$P_D @ T_C = 25^\circ C$	Total Power Dissipation	50	W
T_{STG}	Storage Temperature Range	-55 to 175	°C
T_J	Operating Junction Temperature Range	-55 to 175	°C

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction-ambient ¹	---	100	°C/W
$R_{\theta JC}$	Thermal Resistance Junction -Case ¹	---	3	°C/W

Product Summary

BVDSS	RDSON	ID
100V	0.12Ω	12A

Applications

- PWM Motor Controls
- LED controller
- Power Supplies
- DC-DC & DC-AC Converters

TO-252/251 Pin Configuration

Electrical Characteristics ($T_J=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_D=250\text{uA}$	100	---	---	V
$\text{R}_{\text{DS(ON)}}$	Static Drain-Source On-Resistance ²	$\text{V}_{\text{GS}}=10\text{V}$, $\text{I}_D=8\text{A}$	---	---	0.12	Ω
		$\text{V}_{\text{GS}}=4.5\text{V}$, $\text{I}_D=5\text{A}$	---	---	0.135	
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	$\text{V}_{\text{GS}}=\text{V}_{\text{DS}}$, $\text{I}_D=250\text{uA}$	1	---	3	V
I_{DSS}	Drain-Source Leakage Current	$\text{V}_{\text{DS}}=100\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $T_J=25^\circ\text{C}$	---	---	1	uA
		$\text{V}_{\text{DS}}=100\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $T_J=150^\circ\text{C}$	---	---	10	
I_{GSS}	Gate-Source Leakage Current	$\text{V}_{\text{GS}}=\pm 20\text{V}$, $\text{V}_{\text{DS}}=0\text{V}$	---	---	± 100	nA
g_{fs}	Forward Transconductance	$\text{V}_{\text{DS}}=10\text{V}$, $\text{I}_D=6\text{A}$	---	9	---	S
R_g	Gate Resistance	$\text{V}_{\text{DS}}=0\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $f=1\text{MHz}$	---	1.1	---	Ω
Q_g	Total Gate Charge	$\text{V}_{\text{DS}}=80\text{V}$, $\text{V}_{\text{GS}}=5\text{V}$, $\text{I}_D=6\text{A}$	---	13.5	---	nC
Q_{gs}	Gate-Source Charge		---	3.2	---	
Q_{gd}	Gate-Drain Charge		---	7.4	---	
$\text{T}_{\text{d(on)}}$	Turn-On Delay Time	$\text{V}_{\text{DD}}=50\text{V}$, $\text{V}_{\text{GS}}=10\text{V}$, $\text{R}_C=9.1\Omega$	---	9.6	---	ns
T_r	Rise Time		---	45	---	
$\text{T}_{\text{d(off)}}$	Turn-Off Delay Time		---	40	---	
T_f	Fall Time		---	21	---	
C_{iss}	Input Capacitance	$\text{V}_{\text{DS}}=25\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $f=1\text{MHz}$	---	800	---	pF
C_{oss}	Output Capacitance		---	150	---	
C_{rss}	Reverse Transfer Capacitance		---	38	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_s	Continuous Source Current ¹	$\text{V}_G=\text{V}_D=0\text{V}$, Force Current	---	---	12	A
I_{SM}	Pulsed Source Current ²		---	---	40	A
V_{SD}	Diode Forward Voltage ²	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_s=1\text{A}$, $T_J=25^\circ\text{C}$	---	---	1	V

Note :

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\leq 300\text{us}$, duty cycle $\leq 2\%$
- 3.The EAS data shows Max. rating . The test condition is $\text{V}_{\text{DD}}=50\text{V}$, $\text{V}_{\text{GS}}=10\text{V}$, $\text{L}=1\text{mH}$, $\text{I}_L=11\text{A}$

This product has been designed and qualified for the consumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserves the right to improve product design ,functions and reliability without notice.