30V N-Channel MOSFET ## **General Description** The 05N03 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a wide variety of applications #### **Features** - Advanced high cell density Trench technology - Super Low Gate Charge - Excellent CdV/dt effect decline - 100% EAS Guaranteed - Green Device Available # Absolute Maximum Ratings # **Product Summary** | BVDSS | RDSON | N ID | | |-------|-------|------|--| | 30V | 5mΩ | 80A | | #### **Applications** - High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA - Networking DC-DC Power System - Load Switch # TO-252/251 Pin Configuration | Туре | Package | Marking | |----------|---------|----------| | CMD05N03 | TO-252 | CMD05N03 | | CMU05N03 | TO-251 | CMU05N03 | | Symbol | Parameter | Rating | Units | | |---------------------------------------|--|------------|-------|--| | V_{DS} | Drain-Source Voltage | 30 | V | | | V_{GS} | Gate-Source Voltage | ±20 | V | | | I _D @T _C =25°C | Continuous Drain Current ¹ | 80 | Α | | | I _D @T _C =100°C | Continuous Drain Current ¹ | 55 | Α | | | I _{DM} | Pulsed Drain Current ² | 240 | Α | | | EAS | Single Pulse Avalanche Energy ³ | 180 | mJ | | | P _D @T _C =25°C | Total Power Dissipation | 90 | W | | | T _{STG} | Storage Temperature Range -55 to 175 | | °C | | | TJ | Operating Junction Temperature Range | -55 to 175 | °C | | ### **Thermal Data** | Symbol | Parameter | Тур. | Max. | Unit | |------------------|--|------|------|------| | $R_{ heta JA}$ | Thermal Resistance Junction-ambient ¹ | | 62 | °C/W | | R _{eJC} | Thermal Resistance Junction -Case ¹ | | 2.8 | °C/W | # CMD05N03/CMU05N03 #### **30V N-Channel MOSFET** # Electrical Characteristics (T_J=25 ℃, unless otherwise noted) | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |---------------------|--|--|------|------|------|------| | BV _{DSS} | Drain-Source Breakdown Voltage | V _{GS} =0V , I _D =250uA | 30 | | | V | | D | Static Drain-Source On-Resistance ² | V _{GS} =10V , I _D =25A | | | 5 | mΩ | | R _{DS(ON)} | | V _{GS} =4.5V , I _D =20A | | | 7.5 | | | V _{GS(th)} | Gate Threshold Voltage | V _{DS} =V _{GS} ,I _D =250µA | 1 | | 2.5 | V | | I _{DSS} | Drain-Source Leakage Current | V _{DS} =24V , V _{GS} =0V , T _J =25 °C | | | 1 | uA | | I _{GSS} | Gate-Source Leakage Current | V _{GS} = ± 20V, V _{DS} =0V | | | ±100 | nA | | gfs | Forward Transconductance | V _{DS} =5V, I _D =20A | | 22 | | S | | R_g | Gate Resistance | V _{DS} =0V , V _{GS} =0V , f=1MHz | | 2.9 | | Ω | | Qg | Total Gate Charge | | | 50 | | | | Q _{gs} | Gate-Source Charge | V _{DS} =25V , V _{GS} =10V, I _D =14A | | 3 | | nC | | Q_gd | Gate-Drain Charge | | | 20 | | | | T _{d(on)} | Turn-On Delay Time | $V_{DS}=15V , V_{GS}=10V , R_{L}=0.75\Omega$ $R_{GEN}=3\Omega$ | | 12 | | | | T _r | Rise Time | | | 35 | | | | T _{d(off)} | Turn-Off Delay Time | | | 50 | | ns | | T _f | Fall Time | | | 13 | | | | C _{iss} | Input Capacitance | V _{DS} =25V , V _{GS} =0V , f=1MHz | | 1500 | | | | C _{oss} | Output Capacitance | | | 220 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | 155 | | | ### **Diode Characteristics** | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |-----------------|--|---|------|------|------|------| | Is | Continuous Source Current ¹ | V _G =V _D =0V , Force Current | | | 80 | Α | | I _{SM} | Pulsed Source Current ² | | | | 240 | Α | | V_{SD} | Diode Forward Voltage ² | V _{GS} =0V , I _S =28 A , T _J =25 ℃ | | | 1.2 | V | #### Note: 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper. 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$ 3. The EAS data shows Max. rating . The test condition is V_{DD} = 20V, V_{GS} = 10V, L=0.5mH, I_{AS} = 27A This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. ${\it Cmos \ reserver \ the \ right \ to \ improve \ product \ design \ , functions \ and \ reliability \ with tout \ notice.}$