

30V N-Channel MOSFET

General Description

The 05N03 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a wide variety of applications

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- 100% EAS Guaranteed
- Green Device Available

Absolute Maximum Ratings

Product Summary

BVDSS	RDSON	N ID	
30V	5mΩ	80A	

Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

TO-252/251 Pin Configuration

Туре	Package	Marking
CMD05N03	TO-252	CMD05N03
CMU05N03	TO-251	CMU05N03

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	30	V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current ¹	80	Α	
I _D @T _C =100°C	Continuous Drain Current ¹	55	Α	
I _{DM}	Pulsed Drain Current ²	240	Α	
EAS	Single Pulse Avalanche Energy ³	180	mJ	
P _D @T _C =25°C	Total Power Dissipation	90	W	
T _{STG}	Storage Temperature Range -55 to 175		°C	
TJ	Operating Junction Temperature Range	-55 to 175	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient ¹		62	°C/W
R _{eJC}	Thermal Resistance Junction -Case ¹		2.8	°C/W

CMD05N03/CMU05N03

30V N-Channel MOSFET

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
D	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =25A			5	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =20A			7.5	
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =250µA	1		2.5	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25 °C			1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ± 20V, V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V, I _D =20A		22		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.9		Ω
Qg	Total Gate Charge			50		
Q _{gs}	Gate-Source Charge	V _{DS} =25V , V _{GS} =10V, I _D =14A		3		nC
Q_gd	Gate-Drain Charge			20		
T _{d(on)}	Turn-On Delay Time	$V_{DS}=15V , V_{GS}=10V , R_{L}=0.75\Omega$ $R_{GEN}=3\Omega$		12		
T _r	Rise Time			35		
T _{d(off)}	Turn-Off Delay Time			50		ns
T _f	Fall Time			13		
C _{iss}	Input Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		1500		
C _{oss}	Output Capacitance			220		pF
C _{rss}	Reverse Transfer Capacitance			155		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ¹	V _G =V _D =0V , Force Current			80	Α
I _{SM}	Pulsed Source Current ²				240	Α
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =28 A , T _J =25 ℃			1.2	V

Note:

1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$

3. The EAS data shows Max. rating . The test condition is V_{DD} = 20V, V_{GS} = 10V, L=0.5mH, I_{AS} = 27A

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

 ${\it Cmos \ reserver \ the \ right \ to \ improve \ product \ design \ , functions \ and \ reliability \ with tout \ notice.}$