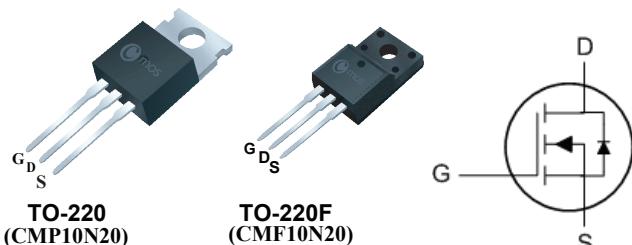


General Description

These N-Channel enhancement mode power field effect transistors uses advanced trench Technology, which provides low on-state resistance, high switching performance and excellent quality. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, DC-AC converters for uninterrupted power supplies and motor controls.

Features


- 100% avalanche tested
- Fast Switching
- Improved dv/dt capability

Product Summary

BVDSS	RDSON	ID
200V	0.36Ω	10A

Applications

- Switch mode power supplies (SMPS)
- PWM Motor Controls
- DC-DC converters

TO-220/220F Pin Configuration**Absolute Maximum Ratings**

Symbol	Parameter	CMP10N20/CMF10N20		Units
V_{DS}	Drain-Source Voltage	200		V
V_{GS}	Gate-Source Voltage	± 30		V
$I_D @ T_c = 25^\circ C$	Continuous Drain Current	10	10^*	A
$I_D @ T_c = 100^\circ C$	Continuous Drain Current	6	6^*	A
I_{DM}	Pulsed Drain Current ¹	30	30^*	A
EAS	Single Pulse Avalanche Energy ²	200		mJ
$P_D @ T_c = 25^\circ C$	Total Power Dissipation	75	38	W
T_{STG}	Storage Temperature Range	-55 to 150		°C
T_J	Operating Junction Temperature Range	-55 to 150		°C

* Drain current limited by maximum junction temperature.

Thermal Data

Symbol	Parameter	CMP10N20	CMF10N20	Unit
$R_{\theta JA}$	Thermal Resistance Junction-ambient	62.5	62.5	°C/W
$R_{\theta JC}$	Thermal Resistance Junction-case	1.74	3.33	°C/W

Electrical Characteristics ($T_J=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_{\text{D}}=250\text{\textmu A}$	200	---	---	V
$\Delta \text{BV}_{\text{DSS}}/\Delta T_J$	BVDSS Temperature Coefficient	Reference to 25°C , $\text{I}_{\text{D}}=250\text{\textmu A}$	---	0.28	---	$\text{V}/^\circ\text{C}$
$\text{R}_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$\text{V}_{\text{GS}}=10\text{V}$, $\text{I}_{\text{D}}=5.4\text{A}$	---	---	0.36	Ω
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	$\text{V}_{\text{GS}}=\text{V}_{\text{DS}}$, $\text{I}_{\text{D}}=250\text{\textmu A}$	2	---	4	V
I_{DSS}	Drain-Source Leakage Current	$\text{V}_{\text{DS}}=200\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$	---	---	10	uA
		$\text{V}_{\text{DS}}=160\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{TC}=125^\circ\text{C}$	---	---	100	
I_{GSS}	Gate-Source Leakage Current	$\text{V}_{\text{GS}}=\pm 30\text{V}$, $\text{V}_{\text{DS}}=0\text{V}$	---	---	± 100	nA
g_{fs}	Forward Transconductance	$\text{V}_{\text{DS}}=20\text{V}$, $\text{I}_{\text{D}}=10\text{A}$	---	10	---	S
Q_{g}	Total Gate Charge	$\text{I}_{\text{D}}=10\text{A}$	---	15	20	nC
Q_{gs}	Gate-Source Charge		---	3.5	---	
Q_{gd}	Gate-Drain Charge		---	6	---	
$\text{T}_{\text{d(on)}}$	Turn-On Delay Time	$\text{V}_{\text{DD}}=100\text{V}$	---	15	---	ns
T_{r}	Rise Time		---	90	---	
$\text{T}_{\text{d(off)}}$	Turn-Off Delay Time		---	50	---	
T_{f}	Fall Time		---	65	---	
C_{iss}	Input Capacitance	$\text{V}_{\text{DS}}=25\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{f}=1\text{MHz}$	---	650	---	pF
C_{oss}	Output Capacitance		---	100	---	
C_{rss}	Reverse Transfer Capacitance		---	20	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{s}	Continuous Source Current	$\text{V}_{\text{G}}=\text{V}_{\text{D}}=0\text{V}$, Force Current	---	---	10	A
I_{SM}	Pulsed Source Current		---	---	30	A
V_{SD}	Diode Forward Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_{\text{s}}=10\text{ A}$, $\text{T}_J=25^\circ\text{C}$	---	---	1.5	V

Note :

1.Repetitive Rating: Pulse width limited by maximum junction temperature

2.L = 1.0mH, $\text{I}_{\text{AS}} = 20\text{A}$, $\text{V}_{\text{DD}} = 50\text{V}$, $\text{R}_G = 25\Omega$, Starting $\text{T}_J = 25^\circ\text{C}$ 3.Pulse Test: Pulse width $\leq 300\mu\text{s}$, Duty Cycle $\leq 2\%$

4.Essentially Independent of Operating Temperature

This product has been designed and qualified for the consumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserves the right to improve product design, functions and reliability without notice.