

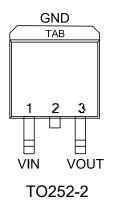
3-Terminal 1 A Positive Voltage Regulator

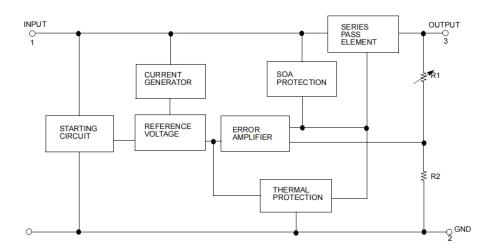
Description

The LM78MxxA series of three-terminal positive regulators are available in the TO252-2 package with several fixed output voltages making it useful in a wide range of applications.

Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area (SOA)Protection


Ordering Information


DEVICE	Package Type	age Type MARKING		Packing Qty	
LM78M05ADT/TR	TO252-2	78M05A	REEL	2500pcs/reel	
LM78M06ADT/TR	TO252-2	78M06A	REEL	2500pcs/reel	
LM78M08ADT/TR	TO252-2	78M08A	REEL	2500pcs/reel	
LM78M12ADT/TR	TO252-2	78M12A	REEL	2500pcs/reel	
LM78M15ADT/TR	TO252-2	78M15A	REEL	2500pcs/reel	
LM78M18ADT/TR	TO252-2	78M18A	REEL	2500pcs/reel	
LM78M24ADT/TR	TO252-2	78M24A	REEL	2500pcs/reel	

PIN CONFIGURATION

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for VO = 5V to 18V)	VI	35	V
(for VO = 24V)	VI	40	V
Thermal Resistance Junction-Case TO-252-2 (Tc = +25 ℃)	RθJC	2.5	°C/W
Thermal Resistance Junction-Air TO-252-2 (Ta = +25 ℃)	RθJA	92	°C/W
Operating Junction Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics (LM78M05A)

(Pofer to the test circuite $40 < T \le +85^{\circ}$ $10-10$ //=10/ upless otherwise specified $C = 0$	22UE CO-0 1UE)
(Refer to the test circuits, -40< TJ < +85℃, IO=1A, VI=10V, unless otherwise specified, CI = 0.	.55µF, CO=0.1µF)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Outrout Malta and	Vo	TJ = +25 ℃	TJ = +25 ℃		5	5.2	N
Output Voltage	VO	IO=5mA to 1A	VI=7V to 20V	4.75	5	5.25	V
		IO = 200mA	VI = 7V to 25V	-	-	100	
Line Regulation (Note3)	ΔVO	TJ =+25℃	VI = 8V to 25V	-	-	50	mV
		IO = 5mA to 0.5/	A, TJ =+25 ℃	-	-	100	
Load Regulation (Note3)	ΔVO	IO = 5mA to 200	mA, TJ =+25℃	-	-	50	mV
Quiescent Current	IQ	TJ =+25 ℃		-	4.0	6.0	mA
	ΔlQ	IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change		IO = 200mA VI = 8V to 25V		-	-	0.8	mA
		IO = 5mA			0.5		
Output Voltage Drift	ΔV/ΔΤ	TJ = -40 to +85℃		-	-0.5	-	mV/℃
Output Noise Voltage	VN	f = 10Hz to 100k	Hz	-	40	-	μV/Vo
Diamta Data stian		f = 120Hz, IO = 300mA			00		JD
Ripple Rejection	RR	VI = 8V to 18V, TJ =+25℃		-	80	-	dB
Dropout Voltage	VD	TJ =+25℃, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ =+25℃, VI =	35V	-	300	-	mA
Peak Current	IPK	TJ =+25 ℃		-	700	-	mA

Note:

Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M06A) (Continued)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
Output Voltage VO		TJ = +25℃		5.75	6	6.25	v
Output Voltage	VU	IO = 5mA to 1.	AVI = 8V to 21V	5.7	6	6.3	
Line Degulation (Note1)	ΔVΟ	IO = 200mA	VI = 8V to 25V	-	-	100	mV
Line Regulation (Note1)	ΔνΟ	TJ = +25 ℃	VI = 9V to 25V	-	-	50	mv
Load Pagulation (Note1)	ΔVO	-	.5A, TJ = +25℃	-	-	120	m\/
Load Regulation (Note1)	ΔνΟ	IO = 5mA to 2	00mA, TJ = +25℃	-	-	60	mV
Quiescent Current	IQ	TJ = +25 ℃		-	4.0	6.0	mA
Quisseent Current Change	ΔIQ	IO = 5mA to 3	50mA	-	-	0.5	mA
Quiescent Current Change		IO = 200mA VI = 9V to 25V		-	-	0.8	IIIA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		_	-0.5	_	mV/℃
		TJ = -40 to +85℃					,
Output Noise Voltage	VN	f = 10Hz to 10	0kHz	-	45	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, IO			00	_	dB
		VI = 9V to 19V, TJ =+25℃		-	80	-	uБ
Dropout Voltage	VD	TJ =+25℃, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ = +25°C, VI= 35V		-	300	-	mA
Peak Current	IPK	TJ =+25 ℃		-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M08A) (Continued)

(Refer to the test circuits, -40 < TJ < +85 $^{\circ}$ C, IO=1A, VI=14V, unless otherwise specified, CI = 0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Output Voltage	Vo TJ =+25°C			7.7	8	8.3	V
	V0	IO = 5mA to 1A	VI = 10.5V to 23V	7.6	8	8.4	V
Line Degulation (Note1)	ΔVο	IO = 200mA	VI = 10.5V to 25V	-	-	100	mV
Line Regulation (Note1)		TJ =+25℃	VI = 11V to 25V	-	-	50	mv
	ΔVο	IO = 5mA to 0.5A	A, TJ =+25℃	-	-	160	
Load Regulation (Note1)		IO = 5mA to 200	mA, TJ =+25℃	-	-	80	mV
Quiescent Current	IQ	TJ = +25℃		-	4.0	6.0	mA
		IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change	ΔlQ	IO = 200mA VI = 10.5V to 25	V	-	-	0.8	mA
Output Voltage Drift	RR	IO = 5mA TJ = -40 to +85℃		-	0.5	-	mV/℃
Output Noise Voltage	VN	f = 10Hz to 100k	Hz	-	52	-	V/Vo
Ripple Rejection	RR	f = 120Hz, IO = 300mA VI = 11.5V to 21.5V, TJ =+25℃		-	80	-	dB
Dropout Voltage	VD	TJ = +25℃, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ = +25℃, VI = 35V		-	300	-	mA
Peak Current	IPK	TJ = +25℃		-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M12A) (Continued)

Defer to the test sireuite	10 - TI-	∠105°C IO-1A \/I-	-10\/ unloss otherwise	specified, CI =0.33µF, CO=0.1µF)
Refer to the test circuits,	-40 < 13 <	× τού ∪, IU−IA, VI-	- 197, uniess oureiwise	specified, $CI = 0.33 \mu r$, $CO = 0.1 \mu r$)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
	Vo	TJ = +25°C	TJ = +25°C		12	12.5	V
Output Voltage	v0	IO = 5mA to 1A	VI = 14.5V to 27V	11.4	12	12.6	V
Line Regulation (Note1)	ΔVΟ	IO = 200mA	VI = 14.5V to 30V	-	-	100	mV
Line Regulation (Note1)		TJ = +25°C	VI = 16V to 30V	-	-	50	IIIV
Load Degulation (Note1)	ΔVΟ	IO = 5mA to 0.5	A, TJ = +25°C	-	-	240	
Load Regulation (Note1)		IO = 5mA to 200	mA, TJ = +25°C	-	-	120	mV
Quiescent Current	IQ	TJ =+25°C		-	4.1	6.0	mA
	ΔIQ	IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change		IO = 200mA			-	0.8	mA
		VI = 14.5V to 30V		-	-	0.0	
Quitout Voltage Drift	A)//AT	IO = 5mA			-0.5		mV/°C
Output Voltage Drift	ΔV/ΔΤ	TJ = -40 to +85°	2	-	-0.5	-	mv/C
Output Noise Voltage	VN	f = 10Hz to 100k	Hz	-	75	-	μV/Vo
		f = 120Hz, IO = 3	300mA				15
Ripple Rejection	RR	VI = 15V to 25V,	TJ =+25°C	-	80	-	dB
Dropout Voltage	VD	TJ =+25°C, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ = +25°C, VI =	35V	-	300	-	mA
Peak Current	IPK	TJ = +25°C		-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M15A) (Continued)

(Refer to the test circuits, -40 < TJ < +85 $^{\circ}$ C, IO=1A, VI=23V, unless otherwise specified, CI =0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
	Vo	TJ = +25°C	TJ = +25°C		15	15.6	V
Output Voltage	V0	IO = 5mA to 1	A VI = 17.5V to 30V	14.25	15	15.75	v
Line Degulation (Note1)	ΔVο	IO = 200mA	VI = 17.5V to 30V	-	-	100	m)/
Line Regulation (Note1)	Δν0	TJ =+25°C	VI = 20V to 30V	-	-	50	mV
Lood Degulation (Noted)	ΔVο	IO = 5mA to 0	.5A, TJ =+25°C	-	-	300	
Load Regulation (Note1)		IO = 5mA to 2	00mA, TJ =+25°C	-	-	150	mV
Quiescent Current	lQ	TJ = +25°C		-	4.1	6.0	mA
	ΔlQ	IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change		IO = 200mA				0.0	mA
		VI = 17.5V to 30V		-	-	0.8	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1	_	mV/°C
Output Voltage Dilit		TJ = -40 to +8	5℃	-	-1	-	
Output Noise Voltage	VN	f = 10Hz to 10	0kHz	-	100	-	V/Vo
Dinale Dejection		f = 120Hz, IO	f = 120Hz, IO = 300mA		70		٦Ŀ
Ripple Rejection RR		VI = 18.5V to 28.5V, TJ =+25°C		-	70	-	dB
Dropout Voltage	VD	TJ =+25°C, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ = +25°C, V	I = 35V	-	300	-	mA
Peak Current	IPK	TJ = +25°C		-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M18A) (Continued)

Parameter	Symbol	C	Conditions		Тур.	Max.	Unit
		TJ = +25°C		17.3	18	18.7	V
Output Voltage	Vo	IO = 5mA to 1A	VI = 20.5V to 33V	17.1	18	18.9	V
	41/0	IO = 200mA	VI = 21V to 33V	-	-	100) (
Line Regulation (Note1)	ΔVO	TJ = +25°C	VI = 24V to 33V	-	-	50	mV
Land Damilation (Nata 1)	11/0	IO = 5mA to 0.5/	A, TJ = +25°C	-	-	360	
Load Regulation (Note1)	ΔVΟ	IO = 5mA to 200)mA, TJ = +25°C	-	-	180	mV
Quiescent Current	IQ	TJ = +25°C		-	4.2	6.0	mA
		IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change	ΔlQ	IO = 200mA			-	0.8	mA
		VI = 21V to 33V		-		0.8	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mATJ = -40 to 85°C		-	-1.1	-	mV/℃
Output Noise Voltage	VN	f = 10Hz to 100k	κHz	-	100	-	V/Vo
Dinale Dejection		f = 120Hz, IO= 300mA ,			70		
Ripple Rejection	RR	VI = 22V to 32VTJ =+25°C		-	70	-	dB
Dropout Voltage	VD	TJ = +25°C, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ = +25°C, VI =	= 35V	-	300	-	mA
Peak Current	IPK	TJ = +25°C		-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M24A) (Continued)

(Refer to the test circuits, $-40 < TJ < +85^{\circ}C$, IO=350mA, VI=33V, unless otherwise specified, CI = 0.33μ F, CO= 0.1μ F)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
	Vo	TJ =+25°C	23	24	25	V	
Output Voltage		IO = 5mA to 1AVI = 27V to 38V	22.8	24	25.2	V	
Line Regulation (Note1)	ΔVO	IO = 200mA VI = 27V to 38V	-	-	100	mV	
		TJ =+25°C VI = 28V to 38V	-	-	50		
Load Regulation (Note1)	ΔVO	IO = 5mA to 0.5A, TJ =+25°C	-	-	480	mV	
		IO = 5mA to 200mA, TJ =+25°C	-	-	240		
Quiescent Current	IQ	TJ = +25°C	-	4.2	6.0	mA	
	ΔlQ	IO = 5mA to 350mA	-	-	0.5	mA	
Quiescent Current Change		IO = 200mA		-	0.8		
		VI = 27V to 38V	-				
Output Voltago Drift	Δν/Δτ	IO = 5mA		-1.2	-	mV/°C	
Output Voltage Drift		TJ = -40 to +85°C	-				
Output Noise Voltage	VN	f = 10Hz to 100kHz	-	170	-	μV/Vo	
	RR	f = 120Hz, IO = 300mA		70	-	dB	
Ripple Rejection		VI = 28V to 38V, TJ =+25°C	-				
Dropout Voltage	VD	TJ = +25°C, IO = 500mA	-	2	-	V	
Short Circuit Current	ISC	TJ = +25°C, VI = 35V	-	300	-	mA	
Peak Current	IPK	TJ = +25°C	-	700	-	mA	

Note:

1.Load and line regulation are specified at constant junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Applications

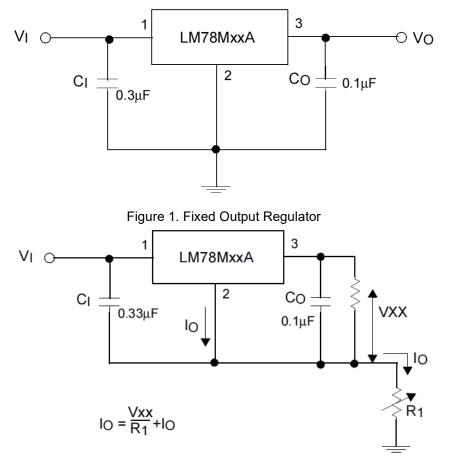


Figure 2. Constant Current Regulator

Notes:

- 1. To specify an output voltage, substitute voltage value for "XX"
- 2. Although no output capacitor is needed for stability, it does improve transient response.
- 3. CI is required if regulator is located an appreciable distance from power Supply filter

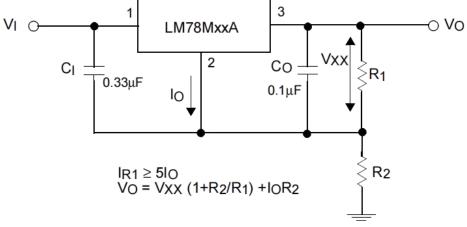


Figure 3. Circuit for Increasing Output Voltage

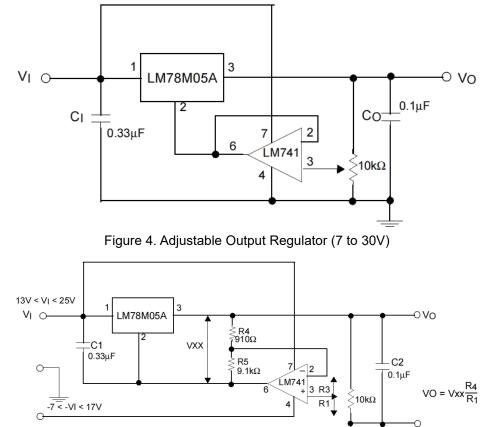
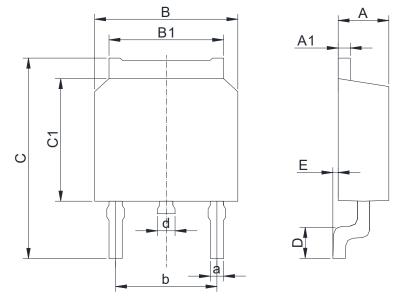



Figure 5. 0.5 to 10V Regulator

Physical Dimensions

TO252-2

Dimensions In Millimeters(TO252-2)											
Symbol:	A	A1	В	B1	С	C1	D	E	а	b	d
Min:	2.10	0.45	6.30	5.10	9.20	5.30	0.90	0	0.50	4.45	0.70
Max:	2.50	0.70	6.75	5.50	10.6	6.30	1.75	0.23	0.80	4.75	1.20

Revision History

DATE	REVISION	PAGE
2018-8-5	New	1-11

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.