anasonic 1 GHz capable, 3 W carrying power (at 1 GHz), 50Ω impedance and 2 Form C relays ## RA RELAYS (ARA) mm inch Protective construction: Sealed type #### **FEATURES** - 1. High frequency characteristics (Impedance 50Ω, ~1.0GHz) - Insertion loss; Max. 0.3dB - · Isolation; Min. 20dB (Between open contacts) Min. 30dB (Between contact sets) • V.S.W.R.; Max. 1.2 2. Surface mount terminal This relay is a surface-mounted model with excellent high-frequency properties. In addition, it can use a microstrip line in the base circuit design which spares the labor of machining the base. 3. Low profile small type 9.7(W)×14.7(L)×5.9(H) mm .382(W)×.579(L)×.232(H) inch - 4. High sensitivity: 140 mW nominal operating power (Single side stable, 2 coil latching) - 5. High contact reliability Electrical life: Min. 107 (10mA 10V DC) #### TYPICAL APPLICATIONS - Measurement market Oscilloscope attenuator circuit - **Communication market** Antenna switching, All types of wireless devices If you consider using applications with low level loads or with high frequency switching, please consult us. #### ORDERING INFORMATION © Panasonic Corporation 2019 #### **TYPES** #### 1. Tube packing | Contact | Rated voltage | Part No. | | Standard packing | | | |-------------|---------------|--------------------|-----------------|------------------|---------|------------| | arrangement | Rated voltage | Single side stable | 1 coil latching | 2 coil latching | Tube | Case | | | 1.5 V DC | ARA200A1H | ARA210A1H | ARA220A1H | | | | | 3 V DC | ARA200A03 | ARA210A03 | ARA220A03 | | | | | 4.5 V DC | ARA200A4H | ARA210A4H | ARA220A4H | | | | | 5 V DC | ARA200A05 | ARA210A05 | ARA220A05 | | | | 2 Form C | 6 V DC | ARA200A06 | ARA210A06 | ARA220A06 | 40 pcs. | 1,000 pcs. | | | 9 V DC | ARA200A09 | ARA210A09 | ARA220A09 | | | | | 12 V DC | ARA200A12 | ARA210A12 | ARA220A12 | | | | | 24 V DC | ARA200A24 | ARA210A24 | ARA220A24 | i | | | | 48 V DC | ARA200A48 | _ | _ | | | #### 2. Tape and reel packing | Contact | Rated voltage | Part No. | | | Standard packing | | |-------------|---------------|--------------------|-----------------|-----------------|------------------|-----------| | arrangement | Rated voltage | Single side stable | 1 coil latching | 2 coil latching | Tape and reel | Case | | | 1.5 V DC | ARA200A1HZ | ARA210A1HZ | ARA220A1HZ | | | | | 3 V DC | ARA200A03Z | ARA210A03Z | ARA220A03Z | | | | | 4.5 V DC | ARA200A4HZ | ARA210A4HZ | ARA220A4HZ | | | | | 5 V DC | ARA200A05Z | ARA210A05Z | ARA220A05Z | | | | 2 Form C | 6 V DC | ARA200A06Z | ARA210A06Z | ARA220A06Z | 500 pcs. | 1,000 pcs | | | 9 V DC | ARA200A09Z | ARA210A09Z | ARA220A09Z | | | | | 12 V DC | ARA200A12Z | ARA210A12Z | ARA220A12Z | | | | | 24 V DC | ARA200A24Z | ARA210A24Z | ARA220A24Z | | | | | 48 V DC | ARA200A48Z | _ | _ | 1 | | Note: Tape and reel packing symbol "-Z" is not marked on the relay. "X" type tape and reel packing (picked from 1-pin side) is also available. #### **RATING** #### 1.Coil data - Operating characteristics such as 'Operate voltage' and 'Release voltage' are influenced by mounting conditions, ambient temperature, etc. - Therefore, please use the relay within ± 5% of rated coil voltage. - · 'Initial' means the condition of products at the time of delivery. #### 1) Single side stable | Rated voltage | Pick-up voltage*
(at 20°C 68°F) | Drop-out voltage*
(at 20°C 68°F) | Rated operating current [±10%] (at 20°C 68°F) | Coil resistance
[±10%] (at 20°C 68°F) | Rated operating power | Max. allowable voltage
(at 20°C 68°F) | |---------------|------------------------------------|-------------------------------------|---|--|-----------------------|--| | 1.5 V DC | | | 93.8 mA | 16 Ω | | | | 3 V DC | | | 46.7 mA | 64.3Ω | | | | 4.5 V DC | 1 | | 31 mA | 145 Ω | | | | 5 V DC | 75%V or less of | 10%V or more of rated voltage | 28.1 mA | 178 Ω | 140 mW | 150%V of rated voltage | | 6 V DC | rated voltage | | 23.3 mA | 257 Ω | | 150 % V of faled voltage | | 9 V DC | (initial) | (initial) | 15.5 mA | 579 Ω | | | | 12 V DC | | | 11.7 mA | 1,028 Ω | | | | 24 V DC | | | 8.3 mA | 2,880 Ω | 200 mW | | | 48 V DC | | | 6.3 mA | 7,680 Ω | 300 mW | 120%V of rated voltage | ^{*} Square, pulse drive (JIS C5442-1996) #### 2) 1 coil latching | Z) i oon latering | | | | | | | | |-------------------|--------------------------------|---|---|--|-----------------------|--|-------------------------| | Rated voltage | Set voltage*
(at 20°C 68°F) | Reset voltage*
(at 20°C 68°F) | Rated operating current [±10%] (at 20°C 68°F) | Coil resistance
[±10%] (at 20°C 68°F) | Rated operating power | Max. allowable voltage
(at 20°C 68°F) | | | 1.5 V DC | | | 46.9 mA | 32 Ω | | | | | 3 V DC | | 75%V or less of rated voltage (initial) | | 23.3 mA | 128.6Ω | | | | 4.5 V DC | | | 15.6 mA | 289.3Ω | | | | | 5 V DC | rated voltage rated vol | | rated voltage | 14 mA | 357 Ω | 70 mW | 150%V of rated voltage | | 6 V DC | | | | 11.7 mA | 514 Ω | | 150% V OF Taled Vollage | | 9 V DC | | | 7.8 mA | 1,157 Ω | | | | | 12 V DC | | | 5.8 mA | 2,057 Ω | | | | | 24 V DC | | | 4.2 mA | 5,760 Ω | 100 mW | | | ^{*} Square, pulse drive (JIS C5442-1996) #### 3) 2 coil latching | o) 2 con latering | | | | | | | |-------------------|--------------------------------|----------------------------------|---|--|-----------------------|--| | Rated voltage | Set voltage*
(at 20°C 68°F) | Reset voltage*
(at 20°C 68°F) | Rated operating current [±10%] (at 20°C 68°F) | Coil resistance
[±10%] (at 20°C 68°F) | Rated operating power | Max. allowable voltage
(at 20°C 68°F) | | 1.5 V DC | | | 93.8 mA | 16 Ω | | | | 3 V DC | | | 46.7 mA | 64.3Ω | | | | 4.5 V DC | | 75%V or less of rated voltage | 31 mA | 145 Ω | | | | 5 V DC | 75%V or less of | | 28.1 mA | 178 Ω | 140 mW | 1500/1/ of roted voltage | | 6 V DC | rated voltage
(initial) | | (initial) | 23.3 mA | 257 Ω | | | 9 V DC | (| () | 15.5 mA | 579 Ω | | | | 12 V DC | | | 11.7 mA | 1,028 Ω | | | | 24 V DC | | | 8.3 mA | 2,880 Ω | 200 mW | | ^{*} Square, pulse drive (JIS C5442-1996) #### 2. Specifications | Characteristics | Item | | Specifications | | | |----------------------|------------------------------------|-----------------------------------|--|--|--| | | Arrangement | | 2 Form C | | | | | Contact resistance (initial) | | Max. 75mΩ (By voltage drop 6V DC 1A) | | | | | Contact materia | al | Stationary: AgPd + Au clad, Movable: AgPd | | | | Contact data | Contact rating (| resistive) | 10mA 10V DC, 1A 30V DC | | | | | Contact input p | ower | 3W (at 1GHz, impedance 50Ω, V.S.W.R. max.1.2) | | | | | Max. switching | voltage | 30V DC | | | | | Max. switching | current | 1A (DC) | | | | High frequency | Isolation | Between open contacts | Min. 20dB | | | | characteristics | Isolation | Between contact sets | Min. 30dB | | | | (initial) (~1GHz, | Insertion loss (| without D.U.T. board's loss) | Max. 0.3dB | | | | Impedance 50Ω) | V.S.W.R. | | Max. 1.2 | | | | Insulation resistand | e (initial) | | Min. 100MΩ (at 500V DC, Measured portion is the same as the case of dielectric voltage.) | | | | | Between open contacts | | 750 Vrms for 1min. (detection current: 10mA) | | | | Breakdown voltage | Between contact sets | | 1,000 Vrms for 1min. (detection current: 10mA) | | | | (initial) | Between contact and coil | | 1,000 Vrms for 1min. (detection current: 10mA) | | | | | Between contact and earth terminal | | 1,000 Vrms for 1min. (detection current: 10mA) | | | | Time | Operate [Set] time (initial) | | Max. 4ms (Approx. 2ms) [Max. 4ms (Approx. 2ms)] (at 20°C 68°F, at rated voltage, without bounce | | | | characteristics | Release [Reset] time (initial) | | Max. 4ms (Approx. 1ms) [Max. 4ms (Approx. 2ms)] (at 20°C 68°F, at rated voltage, without bounce without diode) | | | | | Shock | Functional | Min. 500 m/s² (half-sine shock pulse: 11ms; detection time: 10µs) | | | | Mechanical | resistance | Destructive | Min. 1,000 m/s² (half-sine shock pulse: 6ms.) | | | | characteristics | Vibration | Functional | 10 to 55 Hz at double amplitude of 3mm (detection time: 10µs) | | | | | resistance | Destructive | 10 to 55 Hz at double amplitude of 5mm | | | | | Mechanical | | Min. 10 ⁸ (at 180 cpm) | | | | Expected life | Electrical | | Min. 10 ⁷ (at 20 cpm) (10mA 10V DC resistive)
Min. 10 ⁵ (at 20 cpm) (1A 30V DC resistive) | | | | Conditions | Conditions for o | operation, transport and storage* | Ambient temperature: -40°C to +85°C -40°F to +185°F Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) | | | | Unit weight | | | Approx. 2 g .07 oz | | | Note: * The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "AMBIENT ENVIRONMENT" in GENERAL APPLICATION GUIDELINES. Allowable temperature is from -40 to 70°C -40 to 158°F at our standard packing condition. #### **REFERENCE DATA** 1-(1). High frequency characteristics (Impedance $50\Omega)$ Frequency Sample: ARA200A12 . Measuring method: Measured by using our PC board for measurement and HP network analyzer (HP8753C). 1-(2). High frequency characteristics (Impedance 75Ω) Sample: ARA200A12 Measuring method: Measured by using our PC board for measurement and HP network analyzer (HP8753C). • V.S.W.R. • Insertion loss solation #### **DIMENSIONS** (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from https://industrial.panasonic.com/ac/e/ CAD Data Soldering with PC board earth (4 ribs) Tolerance: ±0.3 ±.012 #### PC board pattern Tolerance: ±0.1 ±.004 #### Schematic (Top view) 1 coil latching (Reset condition) 14.30 (Reset condition) #### **NOTES** #### 1. Coil operating power Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay. #### 2. Coil connection When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction. #### 3. External magnetic field Since RA relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition. #### 4. Cleaning For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that alcoholic solvents be used. #### 5. Tape and reel packing #### 1) Tape dimensions (General tolerance: ±0.1 ±.004) #### 2) X type, Z type #### 3) Dimensions of plastic reel #### 6. Soldering Manual soldering shall be performed under following condition. Tip temperature: 280°C to 300°C 536°F to 572°F. Wattage: 30 to 60W Soldering time: within 5s In case of automatic soldering, the following conditions should be observed #### 1) Position of measuring temperature #### 2) IR (infrared reflow) soldering method Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment. Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition. It is recommended to check the temperature rise of each portion under actual mounting condition before use. The soldering earth shall be performed by manual soldering. ## 7. Conditions for operation, transport and storage conditions - 1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay: - (1) Temperature: - -40 to +85°C -40 to +185°F - (2) Humidity: 5 to 85% RH (Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below. (3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage: #### 2) Condensation Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation. #### 3) Freezing Condensation or other moisture may freeze on the relay when the temperature is lower than 0°C 32°F. This causes problems such as sticking of movable parts or operational time lags. 4) Low temperature, low humidity environments The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time. ASCTB102E 201903 #### 8. Measuring method (50Ω type) Connect connectors 1 and 2 respectively to PORT1 and PORT2. Perform calibration using the 3.5 mm .138 inch calibration kit (HP85033C). | | No. Product name | | Contents | |---|------------------|-----------|---| | | 1 | HP 11857D | 7mm Test port, Extension cable, (APC7connector) | | - | 2 | HP 11533A | Adapter, APC7-SMA (Male) | After calibration, connect the D.U.T board and measure. D.U.T. board Dimensions (mm inch) Material; Glass PTFE R-4737 (manufactured by our company) Board thickness; t = 0.8mm .031inch Copper planting thickness; 18µm (Double sided) Connector (SMA type) Product name; R125 403 (RADIALL) Insertion loss compensation; The insertion loss of relay itself is given by subtracting the insertion loss of short-circuit the Com and the NC (or NO). (signal path and two connectors) Please refer to "the latest product specifications" when designing your product. • Requests to customers : https://industrial.panasonic.com/ac/e/salespolicies/ ### **GUIDELINES FOR MICROWAVE DEVICES USAGE** For cautions for use, please read "GUIDELINES FOR RELAY USAGE". https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp #### Precautions for Coil Input #### ■Long term current carrying A circuit that will be carrying a current continuously for long periods without relay or microwave device switching operation. (circuits for emergency lamps, alarm devices and error inspection that, for example, revert only during malfunction and output warnings with form B contacts) Continuous, long-term current to the coil will facilitate deterioration of coil insulation and characteristics due to heating of the coil itself. For circuits such as these, please use a magnetic-hold type latching relay. If you need to use a single stable relay, use a sealed type relay that is not easily affected by ambient conditions and make a failsafe circuit design that considers the possibility of contact failure or disconnection #### **■**DC Coil operating power Steady state DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5% However, please check with the actual circuit since the electrical characteristics may vary. The rated coil voltage should be applied to the coil and the set/reset pulse time of latching type relay differs for each relays, please refer to the relay's individual specifications. #### ■ Coil connection When connecting coils of polarized relays, please check coil polarity (+,-) at the internal connection diagram (Schematic). If any wrong connection is made, it may cause unexpected malfunction, like abnormal heat, fire and so on, and circuit do not work. Avoid impressing voltages to the set coil and reset coil at the same time. #### ■ Maximum allowable voltage and temperature rise Proper usage requires that the rated coil voltage be impressed on the coil. Note, however, that if a voltage greater than or equal to the maximum continuous voltage is impressed on the coil, the coil may burn or its layers short due to the temperature rise. Furthermore, do not exceed the usable ambient temperature range listed in the catalog. #### •Maximum allowable voltage for coil In addition to being a requirement for relay operation stability, the maximum continuous impressed coil voltage is an important constraint for the prevention of such problems as thermal deterioration or deformity of the insulation material, or the occurrence of fire hazards. #### Temperature rise due to pulse voltage When a pulse voltage with ON time of less than 2 minutes is used, the coil temperature rise bares no relationship to the ON time. This varies with the ratio of ON time to OFF time, and compared with continuous current passage, it is rather small. The various relays are essentially the same in this respect. | Current passage time | (%) | |-------------------------|--------------------------------| | For continuousu passage | Tempereture rise value is 100% | | ON : OFF = 3 : 1 | About 80% | | ON : OFF = 1 : 1 | About 50% | | ON : OFF = 1 : 3 | About 35% | #### Operate voltage change due to coil temperature rise (Hot start) In DC relays, after continuous passage of current in the coil, if the current is turned OFF, then immediately turned ON again, due to the temperature rise in the coil, the pick-up voltage will become somewhat higher. Also, it will be the same as using it in a higher temperature atmosphere. The resistance/temperature relationship for copper wire is about 0.4% for 1°C, and with this ratio the coil resistance increases. That is, in order to operate of the relay, it is necessary that the voltage be higher than the pick-up voltage and the pick-up voltage rises in accordance with the increase in the resistance value. However, for some polarized relays, this rate of change is considerably smaller. #### **Ambient Environment** #### Dew condensation Condensation occurs when the ambient temperature drops suddenly from a high temperature and humidity, or the relay and microwave device is suddenly transferred from a low ambient temperature to a high temperature and humidity. Condensation causes the failures like insulation deterioration, wire disconnection and rust etc. Panasonic Corporation does not guarantee the failures caused by condensation The heat conduction by the equipment may accelerate the cooling of device itself, and the condensation may occur. Please conduct product evaluations in the worst condition of the actual usage. (Special attention should be paid when high temperature heating parts are close to the device. Also please consider the condensation may occur inside of the device.) #### Icing Condensation or other moisture may freeze on relays when the temperature become lower than 0°C. This icing causes the sticking of movable portion, the operation delay and the contact conduction failure etc. Panasonic Corporation does not guarantee the failures caused by the icing. The heat conduction by the equipment may accelerate the cooling of relay itself and the icing may occur. Please conduct product evaluations in the worst condition of the actual usage. #### Low temperature and low humidity The plastic becomes brittle if the switch is exposed to a low temperature, low humidity environment for long periods of time. #### •High temperature and high humidity Storage for extended periods of time (including transportation periods) at high temperature or high humidity levels or in atmospheres with organic gases or sulfide gases may cause a sulfide film or oxide film to form on the surfaces of the contacts and/or it may interfere with the functions. Check out the atmosphere in which the units are to be stored and transported. #### Package In terms of the packing format used, make every effort to keep the effects of moisture, organic gases and sulfide gases to the absolute minimum. #### Storage requirements Since the SMD type is sensitive to humidity it is packaged with tightly sealed anti-humidity packaging. However, when storing, please be careful of the following. - Please use promptly once the anti-humidity pack is opened.(within 72 hours, Max. 30°C/70% R.H.). If left with the pack open, the relay will absorb moisture which will cause thermal stress when reflow mounting and thus cause the case to expand. As a result, the seal may break. - *For RE relays, after this bag is opened, the product must be used within 24 hours. - If relays will not be used within 72 hours, please store relays in a humidity controlled desiccator or in an anti-humidity bag to which silica gel has been added. - *If the relay is to be soldered after it has been exposed to excessive humidity atmosphere, cracks and leaks can occur. Be sure to mount the relay under the required mounting conditions - *For RE relays, after this bag is opened, the product must be used within 24 hours. #### Caution This vacuum-sealed bag contains #### Moisture Sensitive Products After this bag is opened, the product must be used #### within 72 hours If product is not used within 72 hours, baking is necessary. For baking conditions please contact us. 3) The following cautionary label is affixed to the anti-humidity pack. #### Silicon When a source of silicone substances (silicone rubber, silicone oil, silicone coating materials and silicone filling materials etc.) is used around the relay, the silicone gas (low molecular siloxane etc.) may be produced. This silicone gas may penetrate into the inside of the relay. When the relay is kept and used in this condition, silicone compound may adhere to the relay contacts which may cause the contact failure. Do not use any sources of silicone gas around the relay (Including plastic seal types). #### NOx Generation When relay is used in an atmosphere high in humidity to switch a load which easily produces an arc, the NOx created by the arc and the water absorbed from outside the relay combine to produce nitric acid. This corrodes the internal metal parts and adversely affects operation. Avoid use at an ambient humidity of 85%RH or higher (at 20°C). If use at high humidity is unavoidable, please contact our sales representative. *RE Relays only #### Caution This vacuum-sealed bag contains #### Moisture Sensitive Products After this bag is opened, the product must be used #### within 24 hours If product is not used within 24 hours, baking is necessary. For baking conditions please contact us. #### Others #### ■ Cleaning - Although the environmentally sealed type relay (plastic sealed type, etc.) can be cleaned, avoid immersing the relay into cold liquid (such as cleaning solvent) immediately after soldering. Doing so may deteriorate the sealing performance. - Surface mount terminal type relay is sealed type and it can be cleaned by immersion. Use pure water or alcohol-based cleaning solvent - 3) Cleaning with the boiling method is recommended (The temperature of cleaning liquid should be 40°C or lower). Avoid ultrasonic cleaning on relays. Use of ultrasonic cleaning may cause breaks in the coil or slight sticking of the contacts due to the ultrasonic energy. #### ■Other handling precautions • Expected switching life is defined under the standard test conditions (temperature 15 to 35°C, humidity: 25 to 75%) specified in JIS C 5442. Expected switching life is depend on usage conditions; coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors. Please check relays and microwave devices on the actual circuit. Also, pay special attention loads such as those listed below. When used for AC load-operating and the operating phase is synchronous, rocking and fusing can easily occur due to contact shifting. - Frequent switching under load condition - When high frequently switched under load condition that can cause arc at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO³ is formed. This can corrode metal materials. Countermeasures for these are. - 1. Incorporate an arc-extinguishing circuit. - 2. Lower the operating frequency - 3. Lower the ambient humidity - When used for "Dry switching" without load current, please contact our sales representative. - Please avoid relays to be used outside of the specification ranges such as the coil rating, contact rating and switching life that may cause abnormal heating, smoke, and fire. - In case relays and microwave devices are dropped, please do not use. Please refer to "the latest product specifications" when designing your product. •Requests to customers: https://industrial.panasonic.com/ac/e/salespolicies/ Panasonic Corporation Please contact Electromechanical Control Business Division ■1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industral.panasonic.com/ac/e/ **Panasonic**® ASCTB102E 201907 ©Panasonic Corporation 2019 Specifications are subject to change without notice.