

General Description


The 012N10 uses advanced trench technology and design to provide excellent RDS(ON). This device is ideal for PWM, load switching and general purpose applications.

Product Summary

BVDSS	RDSON	ID
100V	10mΩ	60A

Applications

- DC-DC Converters
- Power switching application

TO-252/251 Pin Configuration**Features**

- Low On-Resistance
- High Reliability Capability with Passivation
- 100% avalanche tested
- RoHS Compliant

Absolute Maximum Ratings

Type	Package	Marking
CMD012N10	TO-252	CMD012N10
CMU012N10	TO-251	CMU012N10

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	100	V
V_{GS}	Gate-Source Voltage	± 20	V
$I_D @ T_c = 25^\circ C$	Continuous Drain Current	60	A
$I_D @ T_c = 100^\circ C$	Continuous Drain Current	41	A
I_{DM}	Pulsed Drain Current	180	A
EAS	Single Pulse Avalanche Energy ¹	40	mJ
$P_D @ T_c = 25^\circ C$	Total Power Dissipation	120	W
T_{STG}	Storage Temperature Range	-55 to 150	°C
T_J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction-ambient (PCB mount) ²	---	50	°C/W
$R_{\theta JC}$	Thermal Resistance Junction -Case	---	1.2	°C/W

Electrical Characteristics ($T_J=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_{\text{D}}=250\text{uA}$	100	---	---	V
$\text{R}_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$\text{V}_{\text{GS}}=10\text{V}$, $\text{I}_{\text{D}}=20\text{A}$	---	---	10	$\text{m}\Omega$
		$\text{V}_{\text{GS}}=4.5\text{V}$, $\text{I}_{\text{D}}=15\text{A}$	---	---	13	
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	$\text{V}_{\text{GS}}=\text{V}_{\text{DS}}$, $\text{I}_{\text{D}}=250\text{uA}$	1	---	3	V
I_{DSS}	Drain-Source Leakage Current	$\text{V}_{\text{DS}}=100\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$	---	---	1	uA
		$\text{V}_{\text{DS}}=100\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{T}_J=55^\circ\text{C}$	---	---	5	
I_{GSS}	Gate-Source Leakage Current	$\text{V}_{\text{GS}}= \pm 20\text{V}$, $\text{V}_{\text{DS}}=0\text{V}$	---	---	± 100	nA
g_{fs}	Forward Transconductance	$\text{V}_{\text{DS}}=10\text{V}$, $\text{I}_{\text{D}}=10\text{A}$	---	20	---	S
R_{g}	Gate Resistance	$\text{V}_{\text{DS}}=0\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{f}=1\text{MHz}$	---	2	---	Ω
Q_{g}	Total Gate Charge	$\text{V}_{\text{DS}}=50\text{V}$, $\text{V}_{\text{GS}}=10\text{V}$, $\text{I}_{\text{D}}=20\text{A}$	---	35	---	nC
Q_{gs}	Gate-Source Charge		---	11	---	
Q_{gd}	Gate-Drain Charge		---	6	---	
$\text{T}_{\text{d(on)}}$	Turn-On Delay Time	$\text{V}_{\text{DS}}=50\text{V}$, $\text{V}_{\text{GS}}=10\text{V}$, $\text{R}_{\text{L}}=2\Omega$ $\text{R}_{\text{GEN}}=3\Omega$	---	13	---	ns
T_{r}	Rise Time		---	8.6	---	
$\text{T}_{\text{d(off)}}$	Turn-Off Delay Time		---	30	---	
T_{f}	Fall Time		---	4	---	
C_{iss}	Input Capacitance	$\text{V}_{\text{DS}}=50\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{f}=1\text{MHz}$	---	1700	---	pF
C_{oss}	Output Capacitance		---	235	---	
C_{rss}	Reverse Transfer Capacitance		---	12	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{s}	Continuous Source Current	$\text{V}_{\text{G}}=\text{V}_{\text{D}}=0\text{V}$, Force Current	---	---	60	A
V_{SD}	Diode Forward Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_{\text{s}}=15\text{A}$, $\text{T}_J=25^\circ\text{C}$	---	---	1.2	V

Note :

1.The test condition is $\text{V}_{\text{DD}}=30\text{V}$, $\text{V}_{\text{GS}}=10\text{V}$, $\text{L}=1\text{mH}$, $\text{I}_{\text{D}}=8\text{A}$

2.Surface mounted on 1 in2 copper pad of FR4 board

This product has been designed and qualified for the consumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserves the right to improve product design ,functions and reliability without notice.