

PARA LIGHT ELECTRONICS CO., LTD.

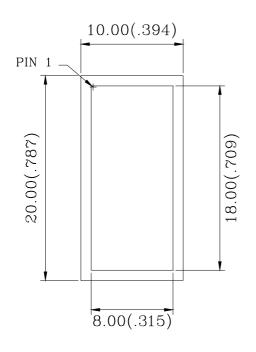
4F, No.1, Lane 93, Chien Yi Road, Chung Ho City, Taipei, Taiwan, R.O.C.

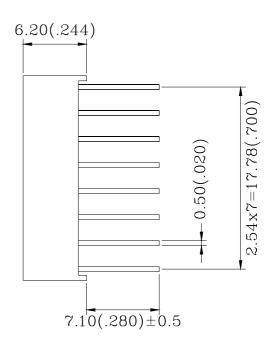
Tel: 886-2-2225-3733 Fax: 886-2-2225-4800 http://www.para.com.tw

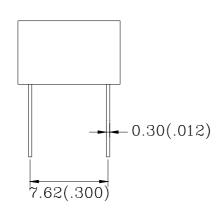
DATA SHEET

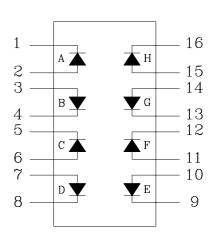
PART NO.: B-1020LY

REV: <u>A/0</u>


CUSTOMER'S APPROVAL : _____ DCC : ____




B-1020LY


REV:A/0

PACKAGE DIMENSIONS

NOTES: 1. All dimensions are in millimeters. (inches)

- 2. Tolerance is \pm 0.25(0.010") unless otherwise specified.
- 3. We would like to offer you samples and mass production after you confirmed the DS and signed to return us

B-1020LY

REV:A/0

FEATURES

- * 20mm x 10mm SQUARE LIGHT BAR
- * LOW POWER REQUIREMENT
- * CAN BE USED WITH PANEL AND LEGEND MOUNT
- * SUITABLE FOR MULTIPLEX OPERATION
- * EASY MOUNTING ON P.C.B

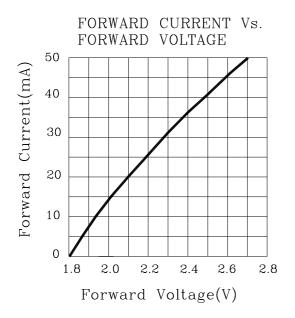
Raw Material: GaAlInP/GaAs

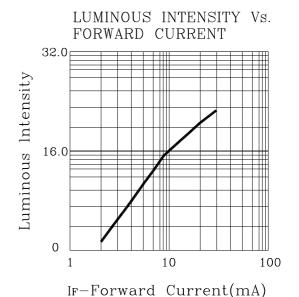
ABSOLUTE MAXIMUM RATING : ($Ta = 25^{\circ}C$)

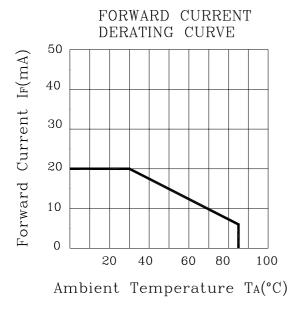
SYMBOL	PARAMETER	ULTRA YELLOW	UNIT
PAD	Power Dissipation Per Bar	60 mW	
VR	Reverse Voltage Per Bar	5	V
IAF	Continuous Forward Current Per Bar	20	mA
_	Derating Linear From 25°C Per Bar	0.27	mA/°C
Topr	Operating Temperature Range	−35°C to 85°C	
Tstg	Storage Temperature Range	−35°C to 85°C	
Solder Temperature 1/16 inch Below Seating Plane for 3 Seconds at 250°C			

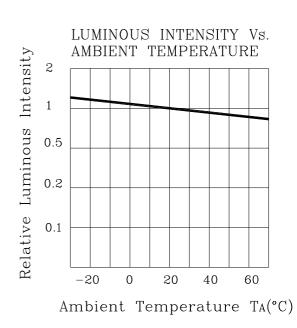
ELECTRO-OPTICAL CHARACTERISTICS : ($Ta = 25^{\circ}C$)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
VF	Forward Voltage , Per Bar	IF = 20mA		2.1	2.6	V
lR	Reverse Current , Per Bar	VR = 5V			100	μΑ
λP	Peak Emission Wavelength	IF = 20mA		590		nm
λD	Dominant Wavelength	IF = 20mA		594		nm
Δλ	Spectral Line Half—Width	IF = 20mA		15		nm
IV	Luminous Intensity Per Bar	IF = 10mA		16.0		mcd

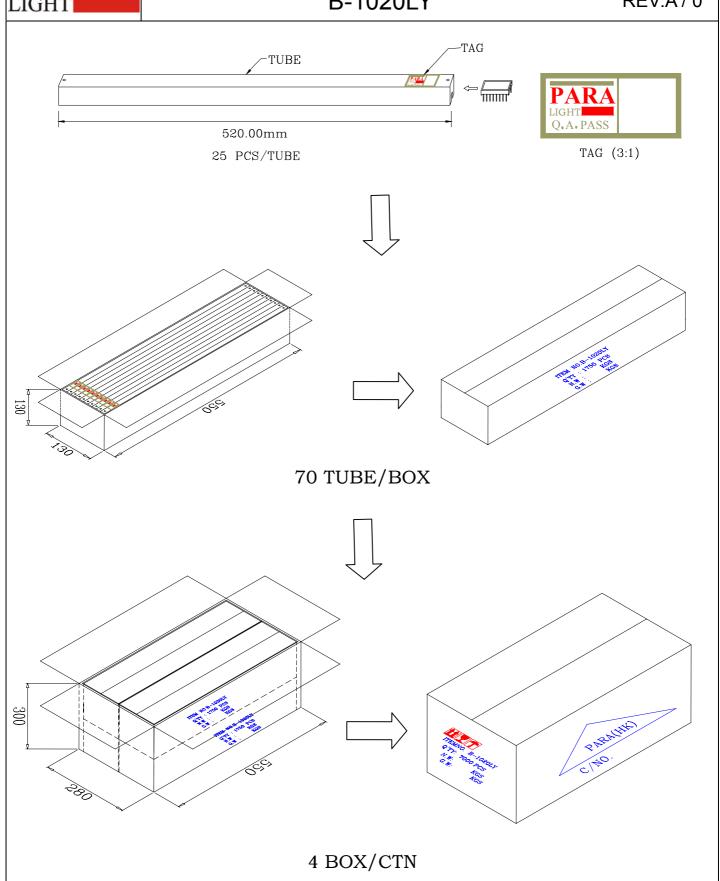

DRAWING NO. : DS-17-04-0072 DATE : 2004-09-02 Page : 3


HD-R/RD014




B-1020LY

REV:A/0


DRAWING NO.: DS-17-04-0072

20 mm x 10 mm SQUARE LIGHT BAR

B-1020LY

REV:A/0

Page: 5

DATE: 2004-09-02

B-1020LY

REV:A/0

Experiment Item:

Item	Test Condition	Reference Standard	
item	Display		
OPERATION LIFE	Ta: 25 ± 5°C IF: 10mA PER SEGMENT TEST TIME: 168HRS (-24HRS → +24HRS) 500HRS (-24HRS → +24HRS) 1000HRS (-24HRS → +72HRS)	MIL-STD-750: 1026 MIL-STD-883: 1005 JIS C 7021: B-1	
HIGH TEMPERATURE HIGH HUMIDITY STORAGE	Ta: 65° C \pm 5° C RH: $90 \sim 95^{\circ}$ RH TEST TIME: 240HRS \pm 2HRS	MIL-STD-202 : 103B JIS C 7021 : B-1	
TEMPERATURE CYCLING	$85^{\circ} \sim 25^{\circ} \sim -35^{\circ} \sim 25^{\circ} \sim$ $30 \text{min } 5 \text{min } 30 \text{min } 5 \text{min}$ 10CYCLES $(\text{COB}: \text{Thot}: 65^{\circ} \subset \text{Tcold}: -25^{\circ} \subset)$	MIL-STD-202: 107D MIL-STD-750: 1051 MIL-STD-883: 1010 JIS C 7021: A-4	
THERMAL SHOCK	$85^{\circ} \pm 5^{\circ} \sim -35^{\circ} \pm 5^{\circ}$ $10 \text{min} \qquad \qquad 10 \text{min}$ 10CYCLES $(\text{COB}: \text{Thot}: 65^{\circ} \subset \text{Tcold}: -25^{\circ} \subset)$	MIL-STD-202: 107D MIL-STD-750: 1051 MIL-SYD-883: 1011	
SOLDER RESISTANCE	T , sol : 260° C \pm 5° C DWELL TIME : 10 ± 1 sec	MIL-STD-202 : 210A MIL-STD-750-2031 JIS C 7021 : A-1	
SOLDERABILITY	T , sol : 230 $^{\circ}$ C \pm 5 $^{\circ}$ C DWELL TIME : 5 \pm I sec	MIL-STD-202: 208D MIL-STD-750: 2026 MIL-STD-883: 2003 JIS C 7021: A-2	

B-1020LY

REV:A/0

•SOLDERING

METHOD	SOLDERING CONDITIONS	REMARK
DIP SOLDERING	Bath temperature: 260±5℃ Immersion time: with 5 sec	 Solder no closer than 2mm from the base of the package Using soldering flux," RESIN FLUX" is recommended.
SOLDERING IRON	Soldering iron: 30W or smaller Temperature at tip of iron: 260℃ or lower Soldering time: within 5 sec.	 During soldering, take care not to press the tip of iron against the PIN. (To prevent heat from being transferred directly to the PIN.)

1) When soldering the PIN of Display in a jig that the package is fixed with a panel (See flG.1), be careful not to stress the PIN with iron tip. When soldering Display in a condition that the package is fixed with a panel, be careful not to cling and stress the surface of Display on the panel to avoid damaging the Display.

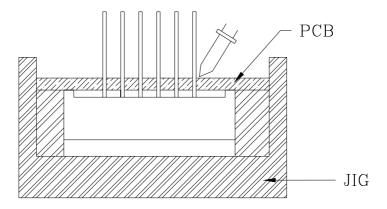


Fig.1

B-1020LY

REV:A/0

2) Similarly, when a jig is used to solder the Display to PC board, take care as much as possible to avoid steering the PIN (See Fig.2).

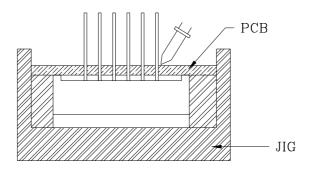
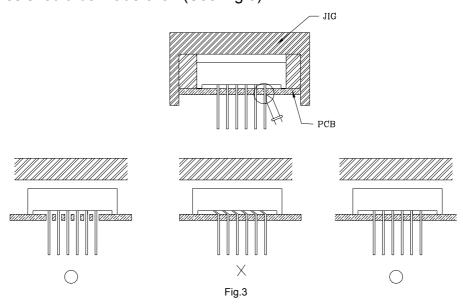



Fig.2

- 3) Repositioning after soldering should be avoided as much as possible. If inevitable, be sure to preserve the soldering conditions with irons stated above: select a best-suited method that assures the least stress to the Display.
- 4) PIN cutting after soldering should be performed only after the Display temperature has returned to normal temperature.

LED MOUNTING METHOD

1) When mounting the Display by using a case, as shown Fig.3, ensure that the mounting holds on the PC board match the pitch of the PIN correctly-tolerance of dimensions of the respective components including the Display should be taken into account especially when designing the case, PC board, etc. to prevent pitch misalignment between the PIN and board holes, the diameter of the board holes should be slightly larger than the size of the PIN. Alternatively, the shape of the holes should be made oval. (See Fig.3)

B-1020LY

REV:A/0

2) Use Display with holder made of resin (Fig.4) to position the PIN.

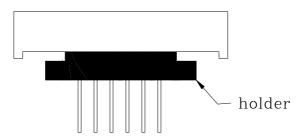


Fig.4

FORMED LEAD

1) The PIN should be bent at a point located at least 2mm away from the package. Bending should be performed with base fixed means of a jig or pliers (Fig.5)

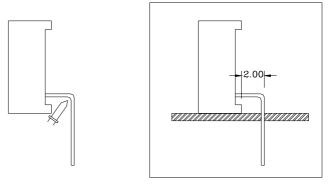


Fig.5

- 2) Forming PIN should be carried our prior to soldering and never during or after soldering.
- Form the PIN of ensure alignment between the PIN and the hole on board, so that stress against the Display is prevented. (Fig.6)

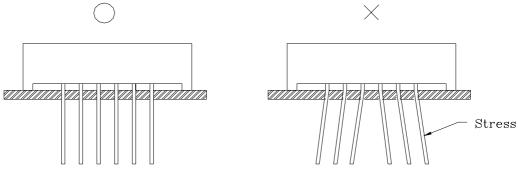


Fig.6

B-1020LY

REV:A/0

•LEAD STRENGTH

1) Bend strength

Do not bend the PIN more than twice. (Fig.7)

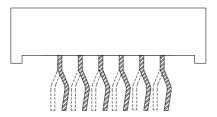


Fig.7

Tensile strength (@Room Temperature)
 If the force is 1kg or less, there will be no problem. (Fig.8)

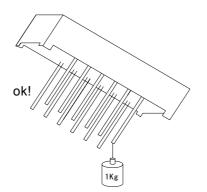


Fig.8

HANDLING PRECAUTIONS

Although rigid against vibration, the Display may damaged or scratched if dropped. So take care when handling.

•CHEMICAL RESISTANCE

- 1) Avoid exposure to chemicals as it may attack the Display surface and cause discoloration.
- 2) When washing is required, refer to the following table for the proper chemical to be sued.

SOLVENT	ADAPTABILITY
Freon TE	\odot
Chlorothene	X
Isopropyl Alcohol	\odot
Thinner	X
Acetone	X
Trichloroethylene	X

⊙--Usable X--Do not use.