CMP32N20P/CMB32N20P/CMI32N20P/CMF32N20P

200V N-Channel MOSFET

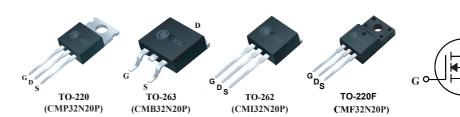
General Description

These N-Channel enhancement mode power field effect transistors are produced using Cmos's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance.

These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, DC-AC converters for uninterrupted power supplies and motor controls.

Product Summary

BVDSS	RDSON	ID
200V	75mΩ	32A


Applications

- UPS
- Inverter
- Lighting

TO-220/263/262/220F Pin Configuration

Features

- Low On-Resistance
- 100% avalanche tested
- RoHS Compliant

Symbol	Parameter	220/263/262	220F	Units
V_{DS}	Drain-Source Voltage	20	200	
V_{GS}	Gate-Source Voltage	±2	±20	
I _D @T _C =25℃	Continuous Drain Current	32	32*	Α
I _D @T _C =100℃	Continuous Drain Current	22	22*	А
I _{DM}	Pulsed Drain Current ¹	128	128*	А
EAS	Single Pulse Avalanche Energy ²	1380		mJ
P _D @T _C =25℃	Total Power Dissipation	160	50	W
T _{STG}	Storage Temperature Range	-55 to 150		$^{\circ}$
T_J	Operating Junction Temperature Range	erating Junction Temperature Range -55 to 150		$^{\circ}$

^{*} Drain current limited by maximum junction temperature

Thermal Data

Symbol	Parameter	220/263/262	220F	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient	62.5	62.5	°C/W
R _{θJC}	Thermal Resistance Junction-case	0.8	2.51	°C/W

CMP32N20P/CMB32N20P/CMI32N20P/CMF32N20P

200V N-Channel MOSFET

Electrical Characteristics ($T_J=25^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	200			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =20A		67	75	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2		4	V
	Drain-Source Leakage Current	V _{DS} =200V , V _S =0V			1	- uA
I _{DSS}		V _{DS} =160V, V _{GS} =0V, T _C =125°C			100	
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =32A		30		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1		Ω
Qg	Total Gate Charge	I _D =32 A		83		
Q_gs	Gate-Source Charge	V _{DD} =160 V		11		nC
Q_gd	Gate-Drain Charge	V _{GS} =10 V		45		
$T_{d(on)}$	Turn-On Delay Time	V _{DD} =100 V I _D =32A R _G =25Ω		25		
Tr	Rise Time			270		no
T _{d(off)}	Turn-Off Delay Time			245		ns
T _f	Fall Time			210		
Ciss	Input Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		2400		
Coss	Output Capacitance			300		pF
C _{rss}	Reverse Transfer Capacitance			40		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			32	Α
I _{SM}	Pulsed Source Current				128	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =32 A , T _J =25℃			1.5	V

Note

2.The EAS data shows Max. rating . The test condition is V_{DD} =50V, V_{GS} =10V,L=5.0mH,I_{AS}=23.5A

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.

^{1.}Repetitive rating; pulse width limited by maximum junction temperature